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Schwartz, Andrew B. and Daniel W. Moran.Motor cortical activity
during drawing movements: population representation during lemnis-
cate tracing.J. Neurophysiol.82: 2705–2718, 1999. Activity was
recorded extracellularly from single cells in motor and premotor
cortex as monkeys traced figure-eights on a touch-sensitive computer
monitor using the index finger. Each unit was recorded individually,
and the responses collected from four hemispheres (3 primary motor
and 1 dorsal premotor) were analyzed as a population. Population
vectors constructed from this activity accurately and isomorphically
represented the shape of the drawn figures showing that they represent
the spatial aspect of the task well. These observations were extended
by examining the temporal relation between this neural representation
and finger displacement. Movements generated during this task were
made in four kinematic segments. This segmentation was clearly
evident in a time series of population vectors. In addition, the2⁄3
power law described for human drawing was also evident in the neural
correlate of the monkey hand trajectory. Movement direction and
speed changed continuously during the task. Within each segment,
speed and direction changed reciprocally. The prediction interval
between the population vector and movement direction increased in
the middle of the segments where curvature was high, but decreased
in straight portions at the beginning and end of each segment. In
contrast to direction, prediction intervals between the movement
speed and population vector length were near-constant with only a
modest modulation in each segment. Population vectors predicted
direction (vector angle) and speed (vector length) throughout the
drawing task. Joint angular velocity and arm muscle EMG were well
correlated to hand direction, suggesting that kinematic and kinetic
parameters are correlated in these tasks.

I N T R O D U C T I O N

Changes in kinematic variables characterize the behavior
expressed by volitional movement. The structure of all move-
ment is determined by the behavioral goal to be achieved. For
example, the time course of velocities taken by the hand when
swatting a fly is characteristically different from that when
reaching for a glass, even though the path of the hand may be
identical. The trajectory of the hand is especially important in
drawing movements where the behavioral goal is the path
taken by the hand. Subjects tend to select a particular pattern of
kinematic parameters from an infinite set that would result in a
desired hand path. These consistent patterns are characterized
by invariants or rules determined by the neural substrate gen-
erating the movement. For instance, there is no reason to
expect that within the motor system, the spatial description of
the path would be linked to the temporal evolution of the

movement. Yet psychophysical results suggest that this is an
important aspect of the trajectory planning process. An initial
study of handwriting (Viviani and Terzuolo 1982) showed that
hand speed and the radius of curvature at each point in the
cursive script were inversely related over discrete segments.
The slope between these variables changed sharply at segment
boundaries located at points in the trajectory where curvature
was at a local minimum. A later analysis (Lacquaniti et al.
1983) showed the speed-curvature relation to be exponential.
Movement speed was proportional to the radius of curvature
raised to the1⁄3 power. This relation is equivalent to the ratio of
angular velocity to curvature (1/radius of curvature) raised to
the 2⁄3 power. Mathematically, this can be represented as

V~t! 5 kR~t!1/3 (1)

v~t! 5 kC~t!2/3 (2)

where V(t) is tangential velocity,R(t) is the instantaneous
radius of curvature,v(t) is the angular velocity,C(t) is the
instantaneous curvature, andk is a proportionality constant.
The “velocity gain factor,”k, changes between segments and is
related to the length of the segment.

These rules, segmentation and the power law, are not the result
of the mechanical process moving the limbs, because the rules are
followed for isometric drawing tasks (Massey et al. 1992) and
even seem to be an important component in the perception of
moving objects (Fagg et al. 1992; Soechting et al. 1986). Further-
more, the value of the exponent (2⁄3) is not determined by an
obligatory relation between kinematic variables because it varies
in children (however, it is constant in adults) (Sciaky et al. 1987;
Viviani and Schneider 1991). The two rules are linked because the
transition between segments is delineated by changes in the ve-
locity gain factork (Soechting and Terzuolo 1987b). With draw-
ings in free space, motion is confined to a plane within a segment,
but switches to a different plane between segments (Soechting and
Terzuolo 1986, 1987a). Although the plane of movement and the
velocity gain factor change instantaneously, there are no abrupt
changes in joint torques or electromyographs (EMGs) at the
segment boundaries.

The observed figural-kinematic relationships are produced
centrally by the neural structures generating the instructions
that cause the arm to move. Our previous work has shown that
the hand’s trajectory is well represented in a population of
motor cortical cell activity (Moran and Schwartz 1999b;
Schwartz 1993, 1994). Although this activity predicts the
hand’s trajectory accurately, it is unlikely that the motor cortex
is the only structure responsible for the trajectory structure
because there are reports of directional tuning with arm move-
ments in a large number of other sensory and motor structures
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(Bosco and Poppele 1993; Fortier et al. 1989; Graziano et al.
1994; Kutz et al. 1997; Ruiz et al. 1995; Turner and Anderson
1997). Furthermore, although we are dealing with kinematic
variables measured in an external coordinate system, the cor-
relation of these variables with kinetic variables during draw-
ing suggests that this type of distinction between classes of
variables may not be pertinent in classifying neuronal activity
patterns during natural behaviors. In a previous paper (Moran
and Schwartz 1999b) we showed that arm joint angles and
EMG were highly correlated to hand velocity. This was even
more evident in the present results.

This paper, the final in a set of three, examines the interre-
lation of speed and direction as a figure is drawn and their
representations in the activity of motor cortical neurons. The
first paper showed that speed and direction could be encoded
simultaneously in the activity of a single unit. The prediction
interval, defined in the second paper as the time interval
between the direction of a population vector and the direction
of the movement velocity, varied as a function of curvature in
a spiral. Here we show that the prediction interval based on
direction varies with curvature within each segment of a figure-
eight. Although this prediction interval was highly modulated,
a prediction interval based on speed was much less so and
could be represented with a constant value. Curvature defines
the way a movement is segmented, and this segmentation is
obvious in the neuronal firing patterns. The neuronal activity,
its timing relative to the movement, the joint angles, EMG, and
hand velocity all show an organization related to movement
segmentation. This gives further support to theories suggesting
that apparently continuous drawing movements are generated
by temporal segments of neural activity (Soechting and Ter-
zuolo 1987a; Viviani 1986; Viviani and Cenzato 1985; Viviani
and Flash 1995).

M E T H O D S

Most of the methods used in these studies have been detailed in
previous reports (Moran and Schwartz 1999b; Schwartz 1992–1994);
only those that are unique to this study will be described here.

Behavioral task

The behavioral apparatus and basic approach are the same as those
described in the preceding paper (Moran and Schwartz 1999b). A lem-
niscate was graphed on a touch-sensitive computer monitor. Superim-
posed on the static figure was an animated circle (1 cm radius) that moved
along the figure each time the finger moved to it. In this way, the animal
controlled the speed of the circle, which was always just ahead of the
finger. The circle regulated the movement tolerance, which in this case
was 1 cm. Each figure-eight was traced as four classes (vertical and
horizontal orientation, clockwise, and counterclockwise) presented in five
randomized blocks. The projected Lissajous lemniscate was 123 12 cm,
but with the tolerance of the moving circle, the animals drew figures that
were slightly larger than 113 11 cm.

Data analysis

Curvature was calculated for both the hand and the neural trajec-
tories usingEq. 3.

C~t! 5
ẋÿ 2 ẍẏ

~ẋ2 1 ẏ2!3/2 (3)

The single and double dot symbols above the variables represent first
and second time derivatives, respectively. Derivatives were calculated
using spline functions (csakm IMSL, Visual Numerics, Houston, TX)
or by differentiating and smoothing with a double-sided, five point
exponential routine.

All comparisons between neuronal and behavioral data in this paper
are carried out with vector quantities. The neuronal data are repre-
sented by population vectors and arm movement data with velocity
vectors. Because the time-varying processing associated with contin-
uous drawing movements is of interest here, each task is divided into
a time series of vectors, and comparisons are made between corre-
sponding population and velocity vectors. In addition to showing (as
we have in the 2 previous papers in this series) that the population
vector is an accurate prediction of the velocity vector, we explore here
the relation of the time interval between the neuronal and movement
vectors and how this prediction interval (PI) is related to vector
directions and vector magnitudes. The directional PI was found by
applying a spline function to the time series of movement vector
directions and interpolating between the 100 values to increase the
total number of points to 10,000. A search was then performed for
each of the population vector directions to find the nearest match
(within 8 bins;;160 ms) to the interpolated movement direction. The
search was halted when the match was within a criterion (0.0005
radians). If this criterion was not met (for instance if the directional
range of the movement was slightly larger than those of the population
vector directions), then the closest direction within eight bins was
used to calculate the time difference. The instantaneous direction was
transformed (by adding or subtracting 2p whenever the direction
changed sign) to unwrap the directions. Segment boundaries were
defined by calculating the slope of the angular velocity profile (using
absolute values) and finding the transition point (a minimum) where
the angular velocity went from decreasing to increasing values.

The temporal profiles of the population and velocity vector mag-
nitudes were semi- sinusoidal. Because the period and relative phase
of both profiles varied as the figure was drawn, it was difficult to
calculate the instantaneous time difference between the two. These
data were applied to the Hilbert transform (Bendat and Piersol 1986)
to calculate the instantaneous phase of each profile. Based on the
Fourier transform, this analysis calculates the phase, frequency, and
amplitude of a continuous signal. This would be an ideal analysis to
apply to the time series of vector magnitudes, making it possible to
compare the phases of the rhythmic signals to get the time lags
between them. However, because low-frequency sinusoidal compo-
nents are emphasized in this transform, it was not possible to get a
precise, bin-by-bin time difference between the two profiles with this
algorithm. Instead we divided the data into pieces bounded by each
extremum. These pieces were monotonic in time so that the speeds
within each piece could be interpolated with a cubic spline. The data
were splined in such a way that for any speed within the piece, the
corresponding instant that the speed occurred could be found. This
made it possible to match each calculated population vector magni-
tude to an interpolated finger speed and to find the corresponding time
value of that matching finger speed. The difference between the time
value of the matched speed and the time of the population vector was
the prediction interval for speed.

R E S U L T S

Movement kinematics

Average finger trajectories are displayed in Fig. 1. These
data were averaged over 1,680 drawings (5 repetitions3
336 units). Each figure was divided into four segments at
angular velocity minima. Individual segments of the trajec-
tory data were normalized to 100 values. The resulting four
segments of displacement data were differentiated succes-
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sively to give values equivalent to instantaneous velocity
and acceleration. Segments in each class were averaged
together over all the experiments, and the result is shown in
Fig. 2. The gray line is zero. Speed (solid line) for each class
had a minimum value (4 mm/bin) near the middle of each
segment. The acceleration profile was slightly asymmetric
with the negative amplitude larger. The profiles across
classes were very similar, showing that the segment-aver-
aged data are robust.

The same procedure was performed for curvature and angu-
lar velocity, and they are displayed in the segment averages of
Fig. 3. Both the curvature and angular velocity are maximal in
the middle of the segment and minimal (by definition) at the
boundaries. The segments are characterized by consistent ki-
nematics: minimum speed and maximum curvature in the
middle and maximum speed and minimal curvature at the
beginning and end.

Population vector direction versus movement direction

Population vectors were composed of responses from 336
cortical cells recorded in 4 different cerebral hemispheres of 2
rhesus monkeys [3 sites were in primary motor cortex; 1,
consisting of 71 units, was in dorsal premotor cortex (see
Moran and Schwartz 1999a) for recording sites of the same
units]. Population vectors constructed only from the motor
cortical data were very similar to those constructed from the
entire data set. Using only the 71 premotor cortical units
resulted in distorted population vectors, a result that is consis-
tent with the analysis performed on these data in the previous
paper (Moran and Schwartz 1999b). Data for each task class
were divided into 100 bins, with a population and finger
velocity vector calculated for each bin. A vectogram compar-
ing these data are shown in Fig. 4. The bottom set of vectors in

each pair are the population vectors, the top set are the finger
velocities. Movement onset from the start zone was used to
align the two sets of vectors. The 10 population vectors before
the alignment point were calculated from the spike data im-
mediately preceding movement onset to show how they predict
the movement vectors at the beginning of the task. These
vectors point in a consistent direction, and their magnitudes are
large, suggesting that the hand was moving toward the start
location in this interval. The movement vectors occurring in
this “prestart” period are not included because position data
were not logged until the finger exited the start circle. For the
remaining 100 vectors, there is a general correspondence of the
population and velocity vectors (direction and magnitude) for
each drawing, although there is a variable temporal offset
between the neural and movement time series along the hori-
zontal axis.

Population and movement vector directions were related
in a characteristic way through each drawing. The directions
of these vectors are compared in Fig. 5. Each of the four
segments is signified by different colors. Directions of the
neural vectors (dotted lines) precede those of the movement.
The filled gray profiles show that the temporal offset be-
tween the neural and movement vectors tended to be small-
est at the beginning and end of each segment. The temporal
offset or prediction interval is the shift along the abscissa
needed to align the two vector directions. Notice that the
temporal pattern of the prediction intervals was very similar
across classes. Because there was a linear negative relation
between the radius of curvature (inverse of curvature) and
the directional PI during spiral drawing (Moran and
Schwartz 1999b), we plotted the segment averages of these
quantities for each class in Fig. 6. The profiles are inversely
related; radius is largest at the beginning and end of the

FIG. 1. Average finger trajectories. The touch screen coor-
dinates recorded during the trials selected for neuronal analysis
were normalized to 100 points and averaged across trials for
each class. Points of minimal angular velocity were segment
boundaries. Segments are color coded and consistent between
classes. Four classes were examined in this study; the lemnis-
cates were oriented vertically and horizontally. Each orientation
was drawn from both directions.
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segment. In contrast, the direction PI starts out small, is
highest in the middle, and decreases at the end of the
segment. These patterns are consistent across the four dif-
ferent task classes. Scatter plots (Fig. 7) of these averaged
data show that there is a clear, linear relation (r 5 20.95
across classes) between the radius of curvature and direction
PI. The slope of these data are24.2 ms/cm compared with
214.5 ms/cm for the spiral data. This comparison is linear
for both the figure 8 and spiral data showing that the
direction PI is directly proportional to the radius of curva-
ture. The difference in slopes may be related to the length of
the trajectory in a way that is analogous to the velocity gain
factor (k of Eqs. 1 and 2) used as the proportionality
constant in the formulation of the2⁄3 power law (Viviani and
Flash 1995). These plots also show that there is a tendency
for the radius of curvature to be near constant in the middle
of the segment that is represented as the nonlinearities at the
peak of the scatter plots for classes one and four.

Because the radius of curvature is directly related to the cube
of the finger speed (power law, described below) it would be
expected that the directional prediction intervals would also be
directly related to finger speed. There was a good linear rela-
tion between these parameters with an average (across classes)
correlation coefficient of 0.92 compared with 0.95 for the

comparison between radius of curvature and prediction in-
terval.

Population vector magnitude versus finger speed

Magnitudes of the population vectors are plotted against
finger speed for each of the drawing tasks in Fig. 8. For
display purposes, the vector lengths were normalized by the
peak speed for each class. The neuronal data in this figure
began at movement onset. When all 110 population vectors
(including the 10 vectors before movement onset) are used
in a cross-correlation between the population and movement
vector magnitudes, the overall correlation (across classes)
was r 5 0.83 [0.855, 0.641, 0.920, 0.908] with the popula-
tion vector signal leading the movement by an average of 73
ms (77.1, 59.1, 96.5, and 59.2 ms). The poorest fit between
the population vector lengths and movement speeds was for
the last segment of class 2. To compare the time differences
between these data and the vector direction the bin-by-bin
lag was calculated by piecewise splining (METHODS). This
can only be calculated from the first to the last extremum in
the time profile. Prediction intervals for the vector magni-
tudes are represented by the filled-in trace. The modulation
of prediction intervals is weaker and less consistent than

FIG. 2. Segment averages of velocity and
acceleration magnitudes. The displacements
shown in Fig. 1 were differentiated succes-
sively to give velocity and acceleration.
These data were then averaged over the 4
segments of each class. Velocity (—) is min-
imal in the middle of each segment and max-
imal at either end. Acceleration (z z z) is neg-
ative at the beginning of the segment,
becoming positive after the velocity mini-
mum. These kinematic profiles of these av-
erage segments are very similar across
classes.
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FIG. 3. Segment averages of curvature and angular velocity. These averages were calculated with the method described for Fig.
2. Both parameters (—, curvature;z z z, angular velocity) are maximal in the middle and minimal at the boundaries of the segment.

FIG. 4. Vectograms of population and displacement vectors. Thebottom seriesof each pairing are the population vectors; the
top are the displacement vectors. The origins of the 100 vectors in each series are evenly spaced along the abscissa. Although the
overall correspondence is very good (r 5 0.87, averaged across classes), there are local time shifts along the abscissa.
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those for directions. Much of the time differences can be
accounted for with a constant temporal shift (especially in
the vertically oriented figures classes 1 and 3). There ap-
pears to be a tendency for an increased PI in the last few
bins of the analysis. This is most likely an edge effect. At
this point in the task the population vectors are predicting
past the end of the movement (notice that they end at a
minimum). In contrast, the movement data ended at a speed
maximum (touch screen data collection ceased when the
finger passed through the last position on the trace). At the
end of the task, the finger speed profile also flattened
slightly. The combination of these factors make it difficult
to estimate the final peak in the last segment of the move-
ment speed trace, leading to apparently prolonged prediction
intervals. Because of this unreliability, only the first three
segments of each class were used to make an average of the
prediction intervals. This and the corresponding modulation
of finger speed are plotted in Fig. 9. The mean PI for speed
is 75 ms. Although there is a small tendency for the predic-
tion interval profiles to peak in the middle of the segment
like those for direction, the profiles are mostly flat (except
for class 2). This is reflected in the very small correlation
between the profiles (r 5 20.028, 20.010, 20.003,
20.020) and shows that most of the temporal shift between
vector magnitudes is constant.

Neural trajectories

To compare the population to the finger trajectories, the
components of the population vectors were shifted in time to
place the two data sets in the same time frame. The magnitudes
of the population vectors were shifted by 75 ms (the mean
speed PI) and the population vector directions were shifted by
the following equation for direction PI

Dt 5 a0 1 a1~radiuspv! (4)

a0 and a1 were determined with regression by plotting the
segment-averaged radius of curvature of the population vectors
against the directional PI in the same way that the finger
trajectory radius of curvature was plotted in Fig. 7. These
values were averaged over classes, givinga0 5 85.6 ms and
a1 5 21.33 ms/cm.

The time-shifted population vectors and the movement vec-
tors were integrated in time by adding them tip-to-tail. The
resultant plots show the neural and finger trajectories (Fig. 10).
The shape and orientation of each figure-eight is clearly rec-
ognizable in the corresponding neural trajectory. A correlation
technique (Shadmehr and Mussa-Ivaldi 1994) for comparing
time series of vectors was applied to the trajectories shown in
Fig. 10. The correlation coefficients resulting from the com-
parison of the population and movement vectors for different

FIG. 5. Comparison of population and movement vector direction. The directions of the vectors in Fig. 4 were transformed to
a range of6p. The abscissa data were derived from the average binwidth across the collected trials for that class. - - -, direction
of the population; —, direction of the movement vectors. Colors correspond to the segments described in Fig. 1. Shaded gray
profiles are the prediction intervals between the population and movement vector direction (the distance between the dashed and
solid lines along the abscissa). The prediction interval (PI) tends to be greatest in the middle of each segment, where the direction
slope is greatest, corresponding to maximal curvature.
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classes are shown in Table 1. Movement and population vec-
tors for the same classes were well correlated (r . 0.96). A
comparison of movement and population vectors across classes

in which the figures were of the same orientation but drawn in
the opposite directions (1–3, 2–4) showed a moderate negative
correlation. There was very little correlation between move-

FIG. 6. Segment average of population curvature and direction prediction interval. Data are averaged within each segment by
interpolating the radius of curvature (inverse of curvature, gray line) and the directional prediction interval to 100 points and
averaging across corresponding points in each segment for every class.

FIG. 7. Directional prediction interval vs. radius of
curvature. Data from Fig. 6 are plotted here in a scatter
plot. The 2 parameters are highly correlated (r 5 20.95
averaged across classes) in an inverse manner.
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FIG. 8. Speed prediction intervals. Prediction intervals were calculated by splining the movement speeds between extrema and
finding the exact match for each population vector speed. The incremental number of bins between these 2 values is the speed PI
and is plotted on the ordinate of the plots in this figure. In general, the PI modulation is small with a tendency to peak in the middle
of the segment.

FIG. 9. Segment averages of speed prediction intervals. Data from Fig. 8 were separated at segment boundaries. These values
in each segment were interpolated to give 100 values and then averaged for each class. Except for class 2, the speed PIs (filled
profile) tend to be flat with a small tendency to peak in the middle of the segment. Finger speed is shown with the gray line.
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ment and population vectors of figures with different orienta-
tions (1–2, 3–4, 2–3, 1–4).

Neural representation of behavioral invariants

The validity of the2⁄3 power law in this paradigm was tested.
Curvature2/3 and angular velocity were calculated for the both
the neural and finger trajectories. Plots of these parameters
derived from the movement and neural trajectories for each
class shown in Fig. 11. The relation between angular velocity
and curvature2/3 is linear as demonstrated by regression (Table
2) for both the neural and finger trajectories. Within a move-
ment, the slopes change abruptly between segments so that
each segment is distinct from the others. These findings are in
agreement with studies using human subjects (Polit and Bizzi
1979; Viviani and Cenzato 1985; Viviani and Terzuolo 1982)
and show that the2⁄3 power law is applicable to drawing

movements performed by monkeys. That this law appears in
the population activity of motor cortical cells suggests that it is
a relevant feature of central processing and is in agreement
with our earlier observations of spiral drawing (Schwartz
1994).

There is a clear representation of speed and direction in the
population vectors of neuronal activity. This dual representa-
tion is also evident in the discharge patterns of individual cells.
Directional tuning parameters from the center3out task were
used to generate a profile of simulated discharge rates based on
the profile of finger directions as the lemniscate was traced.
These are shown in Fig. 12A for the same cell whose responses
were described in the previous paper (Moran and Schwartz
1999b). The activity of this cell recorded in the center3out
task was used to determine the tuning function of this cell.
This, in turn, was used to give a predicted discharge rate based
on the instantaneous direction of the finger as it traced the
lemniscate in the present task. For three of the four classes, this
predicted discharge, based only on finger direction, captured
the major features of the discharge pattern (correlation coeffi-
cient across the 4 classes was 0.68 [r 5 0.80, 0.43, 0.88, and
0.60, with lags of 76, 58, 19, and 19 ms for each class]). The
inclusion of speed in the model improves its accuracy. The
following equation from Moran and Schwartz (1999a) was
used for this

D~t! 2 b0 5 \VW ~t!\~bn 1 by sin @u~t!# 1 bx cos @u~t!#! (5)

whereD is the instantaneous cortical activity,b0, bn, bx,andby
are constants determined from the center3out task,u is the
movement direction, andVW is the velocity of the finger. This
model (– – –) reflected the shape of the discharge rate profiles
better, with a slightly better fit to the data (r 5 0.77 [0.75, 0.50,
0.96, and 0.88 at lags of 76, 19, 19, and 0 ms]). Overall, cells
in this study fit both models with about the same accuracy (r 5
0.6 at a lag of;80 ms). Directional tuning functions for these
cells are broad, so simulated discharge patterns based on the
cosine function have broad plateaus in time as the arm ap-
proaches and leaves the preferred direction (Schwartz 1993).
Inclusion of speed in the modeled discharge transforms the
plateaus into peaks, better matching the actual discharge pat-
terns. For example, the activity in this figure was recorded from
a cell with a preferred direction of 21° (0° is to the right, 90°
is up). In thetop trace (class 4), movement in this direction
occurs in the middle of the third (green) and fourth (blue)
segments. This corresponds to the plateaus in simulated dis-
charge rate of the direction-only model (- - -). However, move-
ment in the preferred direction occurs only in the most highly
curved portion of the figure, where the speed is lowest. The
more complete direction-speed model attenuates the discharge
rate in the slow portions of the figure, resulting in a peak in the

TABLE 1. Correlation matrix of neural and movement trajectories

Class 1 2 3 4

1 0.978 20.011 20.400 20.006
2 0.071 0.961 0.048 20.597
3 20.436 20.041 0.974 0.025
4 0.017 20.606 20.017 0.983

These coefficients are for the trajectories depicted in Fig. 10. Correlations
were calculated using the method of Shadmehr and Mussa-Ivaldi (1994) for
vector fields.

FIG. 10. Neural trajectories. Population vectors were adjusted temporally
with the average prediction intervals and scaled using the maximumx andy
values of the movement trajectory. The vectors were then added tip-to-tail to
create the neural trajectories. In theleft column,100 population vectors were
used beginning at movement onset. Finger trajectories shown in theright
columnare the same data shown in Fig. 1.
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straight part of the trajectory (boundary between segments 2
and 3) when the finger speed is high and the direction is still
near (within 25°) the preferred direction. It is important to note
that the speed sensitivity of these cells will result in discharge
rate peaks at segment boundaries where speed is the highest
even though the direction is fairly constant.

This argument should be valid for all cells regardless of
preferred direction. If a cell’s activity is sensitive to speed as
described in the model, it should tend to peak in those regions
of a drawing movement where speed is highest (i.e., at the
segment boundary). To test this, we normalized the firing rate
profile of each cell by its maximum rate and summed the
profile across cells. With a uniform distribution of preferred
directions across the recorded population, modulation of the
histogram due to direction should be removed. The resulting

modulation will be offset by the average mean rate of activity.
Each peak of the population histogram shown in Fig. 12B
corresponds to a segment boundary. These peaks are due to the
speed sensitivity of the recorded cells.

Because many of the EMG patterns in the center3out
task were directionally tuned (Moran and Schwartz 1999a),
we could use these data to generate simulated EMG patterns
for the lemniscate task with the same method used for the
cortical units. These also yielded good matches to the actual
EMG pattern for most of the muscles, as would be expected
from the results of the spiral task when the same technique
was used (Moran and Schwartz 1999b). The simulated and
actual discharge rate for the pectoralis is shown in Fig. 13
for each of the four classes (n 5 5 trials). The simulated
pattern using the center3out directional tuning data

FIG. 11. Power law applied to the finger and neural trajec-
tories. Angular velocity is the angle between successive vectors
(radians/s) and curvature is that angle divided by the sum of the
adjacent vector magnitudes (radians/cm). The plot of angular
velocity and curvature2/3 resulted in a series of straight lines
(r 5 0.96, on average across classes for neural and movement
data), each of which is a different color representing a different
segment. Both the neural and movement data showed these
characteristics. Monkeys use the same invariant as humans
when drawing, and this law is represented in the population
activity of the motor cortex.
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matches well the actual pattern of thepectoralis(r 5 0.88).
This was true for all the muscles analyzed in this task
(pectoralis, triceps, infraspinatus, middle deltoids,andpos-
terior deltoids; r 5 0.77, n 5 350).

Even the angular velocities of the joints were highly corre-
lated to the coordinate system of the hand. Joint angles for each

of four degrees of freedom about the shoulder and elbow were
measured during the task. To assess phase changes between the
joint angles and changes in hand direction, the preferred direc-
tion of the hand, assigned from the spiral task for each joint,
was designated as the preferred direction for that degree of
freedom. The cosine function was then used to generate a
simulated angular velocity for that joint using the profile of
finger movement directions. The finger-based coordinate sys-
tem yielded very good predictions of joint movement. The
results of this simulation for shoulder adduction are shown in
Fig. 14 for the four classes and show that the simulated and
actual angles are well correlated (r 5 0.82). The correlation for
all joint angles was 0.77. This shows that individual joint
angular velocities were highly correlated to the instantaneous
direction of the finger.

D I S C U S S I O N

An object’s trajectory can be described completely by its
speed and direction. In point-to-point reaching and drawing
tasks (Ashe and Georgopoulos 1994; Moran and Schwartz
1999a; Schwartz 1992, 1993), direction and speed have been
shown to be well represented in motor cortical single-cell

TABLE 2. Linearity of the2⁄3 power law

Class r Slope Intercept

Movement

1 0.97 15.1 20.21
2 0.97 15.8 20.21
3 0.95 15.4 20.14
4 0.96 15.8 20.13

Neural

1 0.94 13.0 0.28
2 0.94 11.8 0.37
3 0.93 12.7 0.71

Correlation coefficients, slopes, and intercepts of a comparison of angular
velocity to curvature to the2⁄3 power. Data are from the movement and neural
trajectories plotted in Fig. 11.

FIG. 12. A: simulated and actual discharge rate for an ex-
ample cell. Two simulated discharge rates were generated from
finger kinematics. The short dashed line is a simulated dis-
charge based solely on finger direction (Eq. 3, Moran and
Schwartz 1999a), whereas the long dashed line was generated
using both finger direction and speed (Eq. 1, Moran and
Schwartz 1999a). The simulated firing rate based on direction
and speed was better correlated with the actual (solid line) firing
rate.B: population histogram. The maximum firing rate of each
cell was used to normalize its firing rate during the task. The
resulting firing rate profiles were averaged across cells. The
average maximum rate was used to give units of mean firing
rate used on the ordinate. The peaks in rate at each segment
boundary are due to the speed sensitivity of individual units.
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activity. These parameters interact; the amplitude of the direc-
tional tuning function is modulated by speed. During drawing,
motor cortical activity is modulated continuously such that a
population of cell responses accurately predicts the velocity of
the finger. In addition to a directional match, population and
velocity vector lengths (speeds) were also highly correlated.
When the population vectors were integrated in time, the
resulting “neural trajectory” closely matched the drawn shape.
The fidelity of the cortical representation can be appreciated by
the high correlation of the neural and movement trajectories.

With the use of the movement trajectory as a reference, it is
possible to calculate the temporal interval between the instan-
taneous representation of a movement parameter in the cortical
population and its execution in the task. As spirals are drawn,
the predictive directional signal in motor cortex precedes the
movement more as the radius of curvature decreases. This
suggests that the intervening processing between motor cortex
and movement takes longer when the spatial derivative of
direction is larger (Moran and Schwartz 1999b; Schwartz
1994). In the present study, we show again that speed and

FIG. 13. Simulated (– – –) and actual (—) electromyo-
graphic (EMG) activity forpectoralismuscle. Using only finger
direction information, a good correlation between simulated
and actual EMG was obtained, illustrating that EMG activity
and finger kinematics are well coupled.

FIG. 14. Simulated and actual joint angular velocities. With
the use of the same “tuning parameters” found in Moran and
Schwartz (1999b) for shoulder adduction, the simulated adduc-
tion angular velocity (– – –) is well correlated to actual velocity.
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direction are represented simultaneously in the population. As
expected from the spiral drawing results, the direction of the
population vectors predicted the movement direction with a
longer lead time (prediction interval) in those portions of the
movement that were more highly curved. This can help explain
some of the behavioral observations characteristic of drawing.
Studies of human drawing have revealed two invariants: seg-
mentation and the2⁄3 power law. These laws were clearly
evident in the finger trajectories of our monkeys as they drew
lemniscates. The linkage between the drawing rate and the
figural components described by these laws is also captured in
the neural data.

The timing of parameter representation in the cortical activ-
ity suggests that constraints in neural processing may underlie
the power law. The variation in prediction interval is directly
related to the spatial derivative of direction. Conversely, the
time interval between cortical representation and movement is
small in straight movements. These findings are consistent with
less downstream parameter processing when direction is near
constant in the task. A similar argument has been made for the
decision to make a saccade based on a random dot display
(Shadlen and Newsome 1996). Direction-sensitive cells in the
lateral intraparietal cortex respond with longer latencies to a
random dot display that is more difficult to interpret, suggest-
ing that less coherent moving dot patterns require more neural
processing before deciding where to saccade.

Psychophysical studies (Soechting and Terzuolo 1987a,b;
Sternad and Schaal 1999) have shown hand kinematics in the
figure-eight task to be cyclical between movement segments
and characteristically interrelated within each segment. Our
aim was to determine how these segment-dependent kinemat-
ics were related to cortical neuronal activity. The present
results show that the cortical population activity closely cor-
responds to these segment-dependent kinematics. Because the
kinematic variables are interrelated, cortical activity is corre-
lated simultaneously to multiple movement parameters. For
instance, our data show a strong cubic relation between the
directional prediction interval and speed in addition to that
between the prediction interval and radius of curvature.

Individual cells have activity patterns that are cosine tuned
to EMG activity and joint angular velocities. This relation,
derived from the center3out task, is robust across tasks where
EMG and joint velocity can be used to predict discharge rate.
Because EMG, joint angular velocity, and hand velocity are so
highly linked in these tasks, it is difficult to categorize the
neuronal activity as specifically related to an individual move-
ment parameter. In fact, it is possible that these widespread
correlations represent a system strategy to control movement
efficiently. On the other hand, population vectors do not yield
accurate EMG or joint angular velocity time profiles (Moran et
al. 1999; Moran and Schwartz 1999a). To use cortical activity
to predict these intrinsic variables, it is possible that a more
complex extraction algorithm will be required.

Because the neural trajectory accurately reflects the hand tra-
jectory, it allows us to address directly some of the issues raised
by behavioral studies of drawing. Psychophysical results show
that these movements are processed in pieces or segments (Soech-
ting and Terzuolo 1987b; Viviani 1986; Viviani and Cenzato
1985), although see Sternad and Schaal (1999). Our results would
tend to support this viewpoint. The kinematics (velocity, acceler-
ation, curvature, and angular velocity) during drawing were highly

consistent between tasks when the data were collapsed into aver-
aged segments. Direct evidence that movement segmentation is a
factor in the central process of movement planning is found in the
neural trajectory. When angular velocity minima were used to
delineate segments in the neural trajectory, the segments were
found to correspond to those of the hand’s trajectory. Single-cell
activity increases at segment boundaries due to the speed sensi-
tivity of these neurons. This is clear in the population activity as
a whole. Consistent with this intensity measure, speed coding can
be found in gross measurement of cortical activity using magne-
toencephalography (Kelso et al. 1998), and segmentation during
drawing should also be found with this technique. Prediction
intervals were directly related to curvature when analyzed by
segments. Finally, segments were demarcated in the neural tra-
jectory data when plotted as angular velocity against curvature
with each segment having a different slope. Kinematics within
each segment are consistent across segments and figure orienta-
tions. Our data clearly show that the neural activity in motor
cortical areas is also consistent with these kinematics. Taken
together, these findings suggest that segmentation is an important
feature in the planning and execution of drawing movements.

Speech is another type of movement that seems to be
planned and produced in elastic units (Monsell 1986). The
duration of these “stress groups” gets longer, and the time to
begin speaking increases as the length of the utterance in-
creases. This was interpreted as an increase in the processing
load associated with retrieving and assembling the units, inde-
pendent of peripheral activation of the muscles used to speak.
Modeling approaches employ algorithms to account for the
time-warping associated with the production of these units
(Hopfield 1995).

Alternative hypotheses pertaining either to preplanning or an
optimal control scheme have been examined relative to the
form and kinematics of drawing (Viviani and Flash 1995). In
the planning scheme, a blueprint as to the form of the move-
ment (2⁄3 power law and isochrony) would exist centrally,
whereas in the optimization scheme, the relation between ki-
nematics and figure geometry would be determined by a global
constraint; in this case, the minimization of jerk. With the
planning scheme, every point is specified along the trajectory.
The optimization scheme requires only a few specific via
points and was able to account for most of the observed
features of the movement (except for those associated with the
duration of the overall movement) as well as the2⁄3 power law.
How then might these two viewpoints converge? During draw-
ing, it is likely that there is some sort of central representation
of the figure to draw: a desired trajectory. Our experiments
have shown that indeed there is an accurate representation of
the upcoming trajectory in the activity of motor cortical cells.
It is likely that the criterion of smoothness or minimum jerk
could also be recognized centrally, and the inverse relation
between speed and curvature would tend to ensure smoothness
by minimizing changes in acceleration within a figure.
Smoothness may be a necessary condition for merging seam-
lessly units of movement processing (Viviani and Flash 1995).
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