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Schwartz, Andrew B. and Daniel W. Moran. Motor cortical activity movement. Yet psychophysical results suggest that this is an
during drawing movements: population representation during lemnignportant aspect of the trajectory planning process. An initial
cate tracing.J. Neurophysiol.82: 2705-2718, 1999. Activity was stydy of handwriting (Viviani and Terzuolo 1982) showed that
recorded extracellularly from single cells in motor and premotq{5n4 speed and the radius of curvature at each point in the
cortex as monkeys traced figure-eights on a touch-sensitive comp - . - .

monitor using the index finger. Each unit was recorded individuaIIlttf:(;s'glltce)ps’ecrtl)Zttwwe(zrga twgsés\fall)r/iargllggeghgxg:aglssﬁgﬁysaigszgnmt:ﬁt

and the responses collected from four hemispheres (3 primary m g . ) .
and 1 dorsal premotor) were analyzed as a population. Populat undaries located at points in the trajectory where curvature

vectors constructed from this activity accurately and isomorphicay@s at a local minimum. A later analysis (Lacquaniti et al.
represented the shape of the drawn figures showing that they repred3&@3) showed the speed-curvature relation to be exponential.
the spatial aspect of the task well. These observations were extenlimvement speed was proportional to the radius of curvature
by examining the temporal relation between this neural representati@iised to thé/z power. This relation is equivalent to the ratio of
and finger displacement. Movements generated during this task wgfgyular velocity to curvature (1/radius of curvature) raised to

made in four kinematic segments. This segmentation was cleaffys 2, power. Mathematically, this can be represented as
evident in a time series of population vectors. In addition, #he

power law described for human drawing was also evident in the neural V(t) = kR(t)*? )}
correlate of the monkey hand trajectory. Movement direction and o
speed changed continuously during the task. Within each segment, w(t) = kC(t) @

speed and direction changed reciprocally. The prediction inter‘(ﬁ}here V(1) is tangential velocity,R(t) is the instantaneous
between the population vector and movement direction increase A’a
e

the middle of the segments where curvature was high, but decreas jus of curvatures(t) is the angular velocityC(y) is the

in straight portions at the beginning and end of each segment.'{ﬁ a&ptalne_ous c_ur]:/ature,,kaﬂ;dls a plrjoportlonallty Constan:j._
contrast to direction, prediction intervals between the movemehf® "VeloCity gain factor,’k, changes between segments and is

speed and population vector length were near-constant with only€jated to the length of the segment.
modest modulation in each segment. Population vectors predicted hese rules, segmentation and the power law, are not the result

direction (vector angle) and speed (vector length) throughout tbéthe mechanical process moving the limbs, because the rules are
drawing task. Joint angular velocity and arm muscle EMG were wdbllowed for isometric drawing tasks (Massey et al. 1992) and
correlated to hand direction, suggesting that kinematic and kinedgen seem to be an important component in the perception of
parameters are correlated in these tasks. moving objects (Fagg et al. 1992; Soechting et al. 1986). Further-
more, the value of the exponeri) is not determined by an
obligatory relation between kinematic variables because it varies
INTRODUCTION in children (however, it is constant in adults) (Sciaky et al. 1987;
V\é}’ia”i and Schneider 1991). The two rules are linked because the

Changes in kinematic variables characterize the beha ansition between segments is delineated by changes in the ve-
expressed by volitional movement. The structure of all movr:% 9 y 9

ment is determined by the behavioral goal to be achieved. E ?ity_ gain factork (Soe.chti.ng anq Terzuolo 1987[:’.)' .With draw-
example, the time course of velocities taken by the hand whi34S In frée space, motion is confined to a plane within a segment,
swatting a fly is characteristically different from that whe ut switches to a different plane between segments (Soechting and

reaching for a glass, even though the path of the hand may zuolo 1986, 1987a). Although the plane of movement and the
: elocity gain factor change instantaneously, there are no abrupt

identical. The trajectory of the hand is especially important i e
drawing moveménts v>\//here the behaviorr)al gogl ispthe pa)féhf’mg‘r"S in joint torques or electromyographs (EMGs) at the
ment boundaries.

taken by the hand. Subjects tend to select a particular patterr? he ob d fi ki " lationshi duced
kinematic parameters from an infinite set that would result in a € observed figural-kinematic relationships are produce

desired hand path. These consistent patterns are character] é}ﬁrally by the neural structures ge.nerating the instructions
by invariants or rules determined by the neural substrate g(% & caus? the_arm to move. Our previous V\_/ork has shoyvn that
erating the movement. For instance, there is no reason'tg, Nand's trajectory is well represented in a population of
expect that within the motor system, the spatial description gcator cortical cell activity (Moran and Schwartz 1999b;

the path would be linked to the temporal evolution of th hwartz 1993, 1994). Although this activity predicts the

and’s trajectory accurately, it is unlikely that the motor cortex
The costs of publication of this article were defrayed in part by the paymeI the Only structure respons[ble .for the t.raJeCt.ory structure
of page charges. The article must therefore be hereby madditisemerit OECaUSe there are reports of directional tuning with arm move-

in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. ~ ments in a large number of other sensory and motor structures
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(Bosco and Poppele 1993; Fortier et al. 1989; Graziano et ahe single and double dot symbols above the variables represent first
1994: Kutz et al. 1997: Ruiz et al. 1995 Turner and Anders@ﬁl_d seco_nd time c_ierivatives, respectivgly. Derivati\_/es were calculated
1997). Furthermore, although we are dealing with kinemati¢ing spline functions (csakm IMSL, Visual Numerics, Houston, TX)

variables measured in an external coordinate system, the @r?Y diffc_erlentia;ing and smoothing with a double-sided, five point
. . . e . ] Xponential routine.
relation of these variables with kinetic variables during draw’ Il comparisons between neuronal and behavioral data in this paper

|ng_suggests that this type of .d'Stht'.on. between classe_)s_aq carried out with vector quantities. The neuronal data are repre-
variables may not be pertinent in classifying neuronal activi§gnted by population vectors and arm movement data with velocity
patterns during natural behaviors. In a previous paper (Morggtors. Because the time-varying processing associated with contin-
and Schwartz 1999b) we showed that arm joint angles anéus drawing movements is of interest here, each task is divided into
EMG were highly correlated to hand velocity. This was evea time series of vectors, and comparisons are made between corre-
more evident in the present results. sponding population and velocity vectors. In addition to showing (as
This paper, the final in a set of three, examines the interpge have in the 2 previous papers in this series) that the population
lation of speed and direction as a figure is drawn and th&ctor is an accurate prediction of the velocity vector, we explore here

representations in the activity of motor cortical neurons Tﬁ@e relation of the time interval between the neuronal and movement
: tors and how this prediction interval (PI) is related to vector

f'.rSt paper ShOWEd that spged and Q|rectlon could be e.nc.o%érgctions and vector magnitudes. The directional Pl was found by
;lmultaneously In.the activity of a single unit. The, prec_ilctlog plying a spline function to the time series of movement vector
interval, defined in the second paper as the time inteN@ections and interpolating between the 100 values to increase the
between the direction of a population vector and the directigftal number of points to 10,000. A search was then performed for
of the movement velocity, varied as a function of curvature iach of the population vector directions to find the nearest match
a spiral. Here we show that the prediction interval based @nithin 8 bins;~160 ms) to the interpolated movement direction. The
direction varies with curvature within each segment of a figureearch was halted when the match was within a criterion (0.0005
eight. Although this prediction interval was highly modulatedadians). If this criterion was not met (for instance if the directional

a prediction interval based on speed was much less so age of the movement was slightly larger than those of the population

could be represented with a constant value. Curvature defifgSto" directions), then the closest direction within eight bins was
d to calculate the time difference. The instantaneous direction was

the way a movement is segmented, and this segmentatior\J

bvi in th | firi tt Th | acti .ttr sformed (by adding or subtractingr avhenever the direction
obvious In the neuronal Tiring patterns. 1he neuronal activity anged sign) to unwrap the directions. Segment boundaries were

its timing relative to the movement, the joint angles, EMG, angfined by calculating the slope of the angular velocity profile (using
hand velocity all show an organization related to movemegbsolute values) and finding the transition point (a minimum) where
segmentation. This gives further support to theories suggesting angular velocity went from decreasing to increasing values.
that apparently continuous drawing movements are generate@ihe temporal profiles of the population and velocity vector mag-
by temporal segments of neural activity (Soechting and Teritudes were semi- sinusoidal. Because the period and relative phase
zuolo 1987a; Viviani 1986; Viviani and Cenzato 1985; Vivianpf both profiles varied as the figure was drawn, it was difficult to
and Flash 1995). calculate the instantaneous time difference between the two. These
data were applied to the Hilbert transform (Bendat and Piersol 1986)
to calculate the instantaneous phase of each profile. Based on the
METHODS Fourier transform, this analysis calculates the phase, frequency, and
] ) ~amplitude of a continuous signal. This would be an ideal analysis to
Most of the methods used in these studies have been detailechisply to the time series of vector magnitudes, making it possible to
previous reports (Moran and Schwartz 1999b; Schwartz 1992-199%gmpare the phases of the rhythmic signals to get the time lags
only those that are unique to this study will be described here.  petween them. However, because low-frequency sinusoidal compo-
nents are emphasized in this transform, it was not possible to get a
precise, bin-by-bin time difference between the two profiles with this
algorithm. Instead we divided the data into pieces bounded by each

The behavioral apparatus and basic approach are the same as fRg§gMUM. These pieces were monotonic in time so that the speeds
described in the preceding paper (Moran and Schwartz 1999b). A lefffthin €ach piece could be interpolated with a cubic spline. The data
niscate was graphed on a touch-sensitive computer monitor. Superii’€ Splined in such a way that for any speed within the piece, the
posed on the static figure was an animated circle (1 cm radius) that mog@f€Sponding instant that the speed occurred could be found. This
along the figure each time the finger moved to it. In this way, the aninf&@de it possible to match each calculated population vector magni-

controlled the speed of the circle, which was always just ahead of /€ to an interpolated finger speed and to find the corresponding time
finger. The circle regulated the movement tolerance, which in this ca&due of that matching finger speed. The difference between the time

was 1 cm. Each figure-eight was traced as four classes (vertical e of the matched speed and the time of the population vector was
horizontal orientation, clockwise, and counterclockwise) presented in fifé§ Prediction interval for speed.

randomized blocks. The projected Lissajous lemniscate was 12cm,

but with the tolerance of the moving circle, the animals drew figures ”]Q‘E SULTS

were slightly larger than 1X 11 cm.

Behavioral task

Movement kinematics

Data analysis Average finger trajectories are displayed in Fig. 1. These

Curvature was calculated for both the hand and the neural traj§tata were averaged over 1,680 drawings (5 repetitisins
tories usingEq. 3. 336 units). Each figure was divided into four segments at
angular velocity minima. Individual segments of the trajec-
Xy — Xy tory data were normalized to 100 values. The resulting four

cv = (52 + )" 3) segments of displacement data were differentiated succes-
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0

Class 1 Class 2

FiIG. 1. Average finger trajectories. The touch screen coor-
dinates recorded during the trials selected for neuronal analysis
were normalized to 100 points and averaged across trials for
each class. Points of minimal angular velocity were segment

cl 3 cl 4 boundaries. Segments are color coded and consistent between
aah ass classes. Four classes were examined in this study; the lemnis-
cates were oriented vertically and horizontally. Each orientation
was drawn from both directions.

Y,

2¢m

sively to give values equivalent to instantaneous velocigach pair are the population vectors, the top set are the finger
and acceleration. Segments in each class were averageldcities. Movement onset from the start zone was used to
together over all the experiments, and the result is shownatign the two sets of vectors. The 10 population vectors before
Fig. 2. The gray line is zero. Speed (solid line) for each clagse alignment point were calculated from the spike data im-

had a minimum value (4 mm/bin) near the middle of eachediately preceding movement onset to show how they predict
segment. The acceleration profile was slightly asymmetfige movement vectors at the beginning of the task. These
with the negative amplitude larger. The profiles acrosgctors point in a consistent direction, and their magnitudes are
classes were very similar, showing that the segment-avgfrye suggesting that the hand was moving toward the start

ag_l?ﬁ data are rOb;St' . df . 4 aplocation in this interval. The movement vectors occurring in
€ same procedure was performed for curvature and angljs «nrestart” period are not included because position data

lar velocity, and they are displayed in the segment average re not logged until the finger exited the start circle. For the

Fig. 3. Both the curvature and angular velocity are maximal - .
the middle of the segment and minimal (by definition) at thlfag:mamlng 100 vectors, there is a general correspondence of the

boundaries. The segments are characterized by consistentpf?r(-)u'ation _and velocity vectors (directior_1 and magnitude) for
nematics: minimum speed and maximum curvature in tﬁé‘Ch drawing, although there is a_vanabl(_e temporal offset.
middle and maximum speed and minimal curvature at tfpetween the neural and movement time series along the hori-

beginning and end. zontal axis. o
Population and movement vector directions were related

in a characteristic way through each drawing. The directions
of these vectors are compared in Fig. 5. Each of the four
Population vectors were composed of responses from 38&gments is signified by different colors. Directions of the
cortical cells recorded in 4 different cerebral hemispheres ofn2ural vectors (dotted lines) precede those of the movement.
rhesus monkeys [3 sites were in primary motor cortex; The filled gray profiles show that the temporal offset be-
consisting of 71 units, was in dorsal premotor cortex (seéween the neural and movement vectors tended to be small-
Moran and Schwartz 1999a) for recording sites of the sarast at the beginning and end of each segment. The temporal
units]. Population vectors constructed only from the motaffset or prediction interval is the shift along the abscissa
cortical data were very similar to those constructed from theeeded to align the two vector directions. Notice that the
entire data set. Using only the 71 premotor cortical unitemporal pattern of the prediction intervals was very similar
resulted in distorted population vectors, a result that is consaeross classes. Because there was a linear negative relation
tent with the analysis performed on these data in the previdustween the radius of curvature (inverse of curvature) and
paper (Moran and Schwartz 1999b). Data for each task cldke directional PI during spiral drawing (Moran and
were divided into 100 bins, with a population and fingeBchwartz 1999b), we plotted the segment averages of these
velocity vector calculated for each bin. A vectogram compaguantities for each class in Fig. 6. The profiles are inversely
ing these data are shown in Fig. 4. The bottom set of vectorsrglated; radius is largest at the beginning and end of the

Population vector direction versus movement direction
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______ ] .
. L e * FIG. 2. Segment averages of velocity and
-....-...,__ o acceleration magnitudes. The displacements

shown in Fig. 1 were differentiated succes-
sively to give velocity and acceleration.

These data were then averaged over the 4
segments of each class. Velocity (—) is min-
imal in the middle of each segment and max-

imal at either end. Acceleration-() is neg-
ative at the beginning of the segment,

'r‘ B LT 0.5 mim/bin? becoming positive after the velocity mini-
Shanaigy et =2 MMBIN mum. These kinematic profiles of these av-

erage segments are very similar across
classes.

0 50 100
Percent

segment. In contrast, the direction Pl starts out small, é@mparison between radius of curvature and prediction in-
highest in the middle, and decreases at the end of ttesval.

segment. These patterns are consistent across the four dif-

ferent task classes. Scatter plots (Fig. 7) of these avera
data show that there is a clear, linear relation= —0.95

across classes) between the radius of curvature and directiomagnitudes of the population vectors are plotted against
PI. The slope of these data aret.2 ms/cm compared with finger speed for each of the drawing tasks in Fig. 8. For
—14.5 ms/cm for the spiral data. This comparison is lineaisplay purposes, the vector lengths were normalized by the
for both the figure 8 and spiral data showing that thgeak speed for each class. The neuronal data in this figure
direction Pl is directly proportional to the radius of curvabegan at movement onset. When all 110 population vectors
ture. The difference in slopes may be related to the length @fcluding the 10 vectors before movement onset) are used
the trajectory in a way that is analogous to the velocity gain a cross-correlation between the population and movement
factor k of Egs. 1and 2) used as the proportionality vector magnitudes, the overall correlation (across classes)
constant in the formulation of th# power law (Viviani and wasr = 0.83 [0.855, 0.641, 0.920, 0.908] with the popula-
Flash 1995). These plots also show that there is a tendenion vector signal leading the movement by an average of 73
for the radius of curvature to be near constant in the middhes (77.1, 59.1, 96.5, and 59.2 ms). The poorest fit between
of the segment that is represented as the nonlinearities at tie population vector lengths and movement speeds was for
peak of the scatter plots for classes one and four. the last segment of class 2. To compare the time differences
Because the radius of curvature is directly related to the cubetween these data and the vector direction the bin-by-bin
of the finger speed (power law, described below) it would Hag was calculated by piecewise spliningefrops). This
expected that the directional prediction intervals would also lsan only be calculated from the first to the last extremum in
directly related to finger speed. There was a good linear rethe time profile. Prediction intervals for the vector magni-
tion between these parameters with an average (across cladsegs are represented by the filled-in trace. The modulation
correlation coefficient of 0.92 compared with 0.95 for thef prediction intervals is weaker and less consistent than

E?fodpulation vector magnitude versus finger speed
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FIG. 3. Segment averages of curvature and angular velocity. These averages were calculated with the method described for Fig.
2. Both parameters (—, curvature;, angular velocity) are maximal in the middle and minimal at the boundaries of the segment.
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FIG. 4. Vectograms of population and displacement vectors.bt®m serie®f each pairing are the population vectors; the
top are the displacement vectors. The origins of the 100 vectors in each series are evenly spaced along the abscissa. Although the
overall correspondence is very goad=¢ 0.87, averaged across classes), there are local time shifts along the abscissa.
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Fic. 5. Comparison of population and movement vector direction. The directions of the vectors in Fig. 4 were transformed to
a range oft . The abscissa data were derived from the average binwidth across the collected trials for that class. - - -, direction
of the population; —, direction of the movement vectors. Colors correspond to the segments described in Fig. 1. Shaded gray

profiles are the prediction intervals between the population and movement vector direction (the distance between the dashed and
solid lines along the abscissa). The prediction interval (Pl) tends to be greatest in the middle of each segment, where the direction
slope is greatest, corresponding to maximal curvature.

those for directions. Much of the time differences can hdeural trajectories

accounted for with a constant temporal shift (especially in , ! . ,

the vertically oriented figures classes 1 and 3). There ap-10 compare the population to the finger trajectories, the
pears to be a tendency for an increased Pl in the last fg?vnponents of the population vectors were shifted in time to
bins of the analysis. This is most likely an edge effect. A2C€ the two data sets in the same time frame. The magnitudes
this point in the task the population vectors are predictirfgj the Population vectors were shifted by 75 ms (the mean
past the end of the movement (notice that they end a eed PI)_and the populatlo_n vector directions were shifted by
minimum). In contrast, the movement data ended at a spd8§ following equation for direction Pl

maximum (touch screen data collection ceased when the
finger passed through the last position on the trace). At the
end of the task, the finger speed profile also flatteneg and a, were determined with regression by plotting the
slightly. The combination of these factors make it difficulsegment-averaged radius of curvature of the population vectors
to estimate the final peak in the last segment of the movagainst the directional Pl in the same way that the finger
ment speed trace, leading to apparently prolonged predictiwajectory radius of curvature was plotted in Fig. 7. These
intervals. Because of this unreliability, only the first thregalues were averaged over classes, givigg= 85.6 ms and
segments of each class were used to make an average ofahe —1.33 ms/cm.

prediction intervals. This and the corresponding modulation The time-shifted population vectors and the movement vec-
of finger speed are plotted in Fig. 9. The mean PI for speéats were integrated in time by adding them tip-to-tail. The
is 75 ms. Although there is a small tendency for the predicesultant plots show the neural and finger trajectories (Fig. 10).
tion interval profiles to peak in the middle of the segmenfthe shape and orientation of each figure-eight is clearly rec-
like those for direction, the profiles are mostly flat (excepignizable in the corresponding neural trajectory. A correlation
for class 2). This is reflected in the very small correlatiotechnique (Shadmehr and Mussa-lvaldi 1994) for comparing
between the profilesr( = -0.028, —0.010, —0.003, time series of vectors was applied to the trajectories shown in
—0.020) and shows that most of the temporal shift betweé&tig. 10. The correlation coefficients resulting from the com-
vector magnitudes is constant. parison of the population and movement vectors for different

At = ay + ay(radius,) (4)
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FIG. 6. Segment average of population curvature and direction prediction interval. Data are averaged within each segment by

interpolating the radius of curvature (inverse of curvature, gray line) and the directional prediction interval to 100 points and
averaging across corresponding points in each segment for every class.

classes are shown in Table 1. Movement and population véewhich the figures were of the same orientation but drawn in
tors for the same classes were well correlated>(0.96). A the opposite directions (1-3, 2—4) showed a moderate negative
comparison of movement and population vectors across classeselation. There was very little correlation between move-

FIG. 7. Directional prediction interval vs. radius of
curvature. Data from Fig. 6 are plotted here in a scatter
plot. The 2 parameters are highly correlatee=(—0.95

1007 averaged across classes) in an inverse manner.

Prediction Interval (ms)

10 20
Radius (cm}
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FIG. 8. Speed prediction intervals. Prediction intervals were calculated by splining the movement speeds between extrema and
finding the exact match for each population vector speed. The incremental number of bins between these 2 values is the speed PI
and is plotted on the ordinate of the plots in this figure. In general, the PI modulation is small with a tendency to peak in the middle
of the segment.

50 ms

20 ém/s

0 50 100
Percent

FIG. 9. Segment averages of speed prediction intervals. Data from Fig. 8 were separated at segment boundaries. These values
in each segment were interpolated to give 100 values and then averaged for each class. Except for class 2, the speed Pls (filled
profile) tend to be flat with a small tendency to peak in the middle of the segment. Finger speed is shown with the gray line.
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Neural Trajectory Finger Trajectory movements performed by monkeys. That this law appears in
the population activity of motor cortical cells suggests that it is

a relevant feature of central processing and is in agreement
with our earlier observations of spiral drawing (Schwartz
/\ 1994).
There is a clear representation of speed and direction in the

population vectors of neuronal activity. This dual representa-

tion is also evident in the discharge patterns of individual cells.
J, Directional tuning parameters from the certeyut task were

used to generate a profile of simulated discharge rates based on

the profile of finger directions as the lemniscate was traced.

< These are shown in Fig. 2&%or the same cell whose responses
were described in the previous paper (Moran and Schwartz
1999b). The activity of this cell recorded in the certaut
task was used to determine the tuning function of this cell.

This, in turn, was used to give a predicted discharge rate based
on the instantaneous direction of the finger as it traced the
lemniscate in the present task. For three of the four classes, this
predicted discharge, based only on finger direction, captured

the major features of the discharge pattern (correlation coeffi-

cient across the 4 classes was 0.68-[0.80, 0.43, 0.88, and
1\ 0.60, with lags of 76, 58, 19, and 19 ms for each class]). The
inclusion of speed in the model improves its accuracy. The

following equation from Moran and Schwartz (1999a) was
used for this

D(t) — by = [V(1)]|(by + by Sin[6(t)] + b, cos[6(t)]) ©)

whereD is the instantaneous cortical activity,, b, b,,and
are constants determined from the centeut task, 0 is the

—
movement direction, ant is the velocity of the finger. This
model (- —-) reflected the shape of the discharge rate profiles
better, with a slightly better fit to the data< 0.77 [0.75, 0.50,

0.96, and 0.88 at lags of 76, 19, 19, and 0 ms]). Overall, cells

in this study fit both models with about the same accuraey (

0.6 at a lag 0of~80 ms). Directional tuning functions for these
_I cells are broad, so simulated discharge patterns based on the

2em  cosine function have broad plateaus in time as the arm ap-
Fic. 10. Neural trajectories. Population vectors were adjusted temporalNOﬂCheS and leaves the preferred direction (Schwartz 1993).
with the average prediction intervals and scaled using the maximandy  Inclusion of speed in the modeled discharge transforms the
e et o e oo 0 papr desers e aleaus info peaks, better matching the aciual discharge pat-
used beginning at r{wvement onset. Finge} trajgctzries shown imighe terns. FQI‘ example, the G}CtIVI.ty in this flgure.was recqrded from
columnare the same data shown in Fig. 1. a cell with a preferred direction of 21° (0° is to the right, 90°
is up). In thetop trace(class 4), movement in this direction
occurs in the middle of the third (green) and fourth (blue)
ment and population vectors of figures with different orient&gments. This corresponds to the plateaus in simulated dis-
tions (1-2, 3—4, 2-3, 1-4). charge rate of the direction-only model (- - -). However, move-
ment in the preferred direction occurs only in the most highly
curved portion of the figure, where the speed is lowest. The
more complete direction-speed model attenuates the discharge
The validity of the7s power law in this paradigm was testedrate in the slow portions of the figure, resulting in a peak in the
Curvaturé” and angular velocity were calculated for the both
the neural and finger trajectories. Plots of these paramet&s-E 1. Correlation matrix of neural and movement trajectories
derived from the movement and neural trajectories for each

Neural representation of behavioral invariants

class shown in Fig. 11. The relation between angular veloci ass L 2 3 4

and curvaturé®is linear as demonstrated by regression (Table; 0.978 _0.011 —0.400 —0.006
2) for both the neural and finger trajectories. Within a move-2 0.071 0.961 0.048 —0.597
ment, the slopes change abruptly between segments so that —0.436 —0.041 0.974 0.025
each segment is distinct from the others. These findings are ifh 0.017 —0.606 —0.017 0.983

agregm_ent Wlth studies using human Su_bJeCtS (POIIt and Blzz+hese coefficients are for the trajectories depicted in Fig. 10. Correlations
1979; Viviani and Cenzato 1985; Viviani and Terzuolo 1982)ere calculated using the method of Shadmehr and Mussa-Ivaldi (1994) for
and show that theé’s power law is applicable to drawing vector fields.
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Finger Trajectories

5 o
e s
Fic. 11. Power law applied to the finger and neural trajec-
tories. Angular velocity is the angle between successive vectors
(radians/s) and curvature is that angle divided by the sum of the
adjacent vector magnitudes (radians/cm). The plot of angular
: i velocity and curvaturé® resulted in a series of straight lines
Neural Trajectories (r = 0.96, on average across classes for neural and movement
data), each of which is a different color representing a different
= segment. Both the neural and movement data showed these
<) characteristics. Monkeys use the same invariant as humans
> when drawing, and this law is represented in the population
activity of the motor cortex.
W, 0
w0
@ 12.0
=
oy
8 60
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2 r .
< 0.5 1.0

Curvature (cm™?)

straight part of the trajectory (boundary between segmentsriddulation will be offset by the average mean rate of activity.
and 3) when the finger speed is high and the direction is stilhch peak of the population histogram shown in FigB 12
near (within 25°) the preferred direction. It is important to noteorresponds to a segment boundary. These peaks are due to the
that the speed sensitivity of these cells will result in dischargpeed sensitivity of the recorded cells.
rate peaks at segment boundaries where speed is the higheBecause many of the EMG patterns in the centeut
even though the direction is fairly constant. task were directionally tuned (Moran and Schwartz 1999a),
This argument should be valid for all cells regardless ofe could use these data to generate simulated EMG patterns
preferred direction. If a cell's activity is sensitive to speed dsr the lemniscate task with the same method used for the
described in the model, it should tend to peak in those regiooartical units. These also yielded good matches to the actual
of a drawing movement where speed is highest (i.e., at tBG pattern for most of the muscles, as would be expected
segment boundary). To test this, we normalized the firing rdt@m the results of the spiral task when the same technique
profile of each cell by its maximum rate and summed theas used (Moran and Schwartz 1999b). The simulated and
profile across cells. With a uniform distribution of preferreéctual discharge rate for the pectoralis is shown in Fig. 13
directions across the recorded population, modulation of ther each of the four classes (= 5 trials). The simulated
histogram due to direction should be removed. The resultipgttern using the centerout directional tuning data
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TABLE 2. Linearity of the7s power law of four degrees of freedom about the shoulder and elbow were
measured during the task. To assess phase changes between the
Class r Slope Intercept  joint angles and changes in hand direction, the preferred direc-
Movement tion of the hand, assigned from the spiral task for each joint,
was designated as the preferred direction for that degree of
; 8-3; igé :8-3% freedom. The cosine function was then used to generate a
3 095 15.4 014 s_imulated angular yelo_city for thaj[ joint using the p_rofile of
4 0.96 15.8 013 finger movement directions. The finger-based coordinate sys-
tem yielded very good predictions of joint movement. The
Neural results of this simulation for shoulder adduction are shown in
1 0.94 130 028 Fig. 14 for the four classes and show that the simulated and
> 0.94 1.8 0.37 actualangles are well correlatet= 0.82). The correlation for
3 0.93 12.7 0.71 all joint angles was 0.77. This shows that individual joint

angular velocities were highly correlated to the instantaneous
Correlation coefficients, slopes, and intercepts of a comparison of anguﬁ‘,ﬂfection of the finger.

velocity to curvature to thé&s power. Data are from the movement and neural

trajectories plotted in Fig. 11.

) DISCUSSION
matches well the actual pattern of thectoralis(r = 0.88).

This was true for all the muscles analyzed in this task An object’s trajectory can be described completely by its
(pectoralis, triceps, infraspinatus, middle deltoidsidpos- speed and direction. In point-to-point reaching and drawing
terior deltoids; r = 0.77,n = 350). tasks (Ashe and Georgopoulos 1994; Moran and Schwartz
Even the angular velocities of the joints were highly corret999a; Schwartz 1992, 1993), direction and speed have been
lated to the coordinate system of the hand. Joint angles for eatlown to be well represented in motor cortical single-cell

Fic. 12. A: simulated and actual discharge rate for an ex-
ample cell. Two simulated discharge rates were generated from
finger kinematics. The short dashed line is a simulated dis-
charge based solely on finger directioBq( 3, Moran and
Schwartz 1999a), whereas the long dashed line was generated
using both finger direction and speeéq( 1, Moran and
Schwartz 1999a). The simulated firing rate based on direction
and speed was better correlated with the actual (solid line) firing
rate.B: population histogram. The maximum firing rate of each
cell was used to normalize its firing rate during the task. The
resulting firing rate profiles were averaged across cells. The
average maximum rate was used to give units of mean firing
rate used on the ordinate. The peaks in rate at each segment
T ! boundary are due to the speed sensitivity of individual units.

spikes/s

50 100
Bin
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FIG. 13. Simulated (——-) and actual (—) electromyo-
graphic (EMG) activity fopectoralismuscle. Using only finger
direction information, a good correlation between simulated
and actual EMG was obtained, illustrating that EMG activity
and finger kinematics are well coupled.

L]
50 100
Bin

activity. These parameters interact; the amplitude of the direc-With the use of the movement trajectory as a reference, it is
tional tuning function is modulated by speed. During drawingpossible to calculate the temporal interval between the instan-
motor cortical activity is modulated continuously such that &neous representation of a movement parameter in the cortical
population of cell responses accurately predicts the velocity pépulation and its execution in the task. As spirals are drawn,
the finger. In addition to a directional match, population anthe predictive directional signal in motor cortex precedes the
velocity vector lengths (speeds) were also highly correlatettovement more as the radius of curvature decreases. This
When the population vectors were integrated in time, thleiggests that the intervening processing between motor cortex
resulting “neural trajectory” closely matched the drawn shapand movement takes longer when the spatial derivative of
The fidelity of the cortical representation can be appreciated tiyection is larger (Moran and Schwartz 1999b; Schwartz
the high correlation of the neural and movement trajectoried994). In the present study, we show again that speed and

(=1

Fic. 14. Simulated and actual joint angular velocities. With
the use of the same “tuning parameters” found in Moran and
Schwartz (1999b) for shoulder adduction, the simulated adduc-
tion angular velocity (— ——) is well correlated to actual velocity.
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direction are represented simultaneously in the population. Asnsistent between tasks when the data were collapsed into aver-
expected from the spiral drawing results, the direction of tteged segments. Direct evidence that movement segmentation is a
population vectors predicted the movement direction with factor in the central process of movement planning is found in the
longer lead time (prediction interval) in those portions of theeural trajectory. When angular velocity minima were used to
movement that were more highly curved. This can help explailelineate segments in the neural trajectory, the segments were
some of the behavioral observations characteristic of drawirfigund to correspond to those of the hand’s trajectory. Single-cell
Studies of human drawing have revealed two invariants: segtivity increases at segment boundaries due to the speed sensi-
mentation and the’s power law. These laws were clearlytivity of these neurons. This is clear in the population activity as
evident in the finger trajectories of our monkeys as they dreawvhole. Consistent with this intensity measure, speed coding can
lemniscates. The linkage between the drawing rate and thefound in gross measurement of cortical activity using magne-
figural components described by these laws is also captureddancephalography (Kelso et al. 1998), and segmentation during
the neural data. drawing should also be found with this technique. Prediction
The timing of parameter representation in the cortical actiintervals were directly related to curvature when analyzed by
ity suggests that constraints in neural processing may undedeagments. Finally, segments were demarcated in the neural tra-
the power law. The variation in prediction interval is directlyectory data when plotted as angular velocity against curvature
related to the spatial derivative of direction. Conversely, theith each segment having a different slope. Kinematics within
time interval between cortical representation and movementeigch segment are consistent across segments and figure orienta-
small in straight movements. These findings are consistent wiidns. Our data clearly show that the neural activity in motor
less downstream parameter processing when direction is neattical areas is also consistent with these kinematics. Taken
constant in the task. A similar argument has been made for together, these findings suggest that segmentation is an important
decision to make a saccade based on a random dot disgksture in the planning and execution of drawing movements.
(Shadlen and Newsome 1996). Direction-sensitive cells in theSpeech is another type of movement that seems to be
lateral intraparietal cortex respond with longer latencies topdanned and produced in elastic units (Monsell 1986). The
random dot display that is more difficult to interpret, suggestiuration of these “stress groups” gets longer, and the time to
ing that less coherent moving dot patterns require more neupalgin speaking increases as the length of the utterance in-
processing before deciding where to saccade. creases. This was interpreted as an increase in the processing
Psychophysical studies (Soechting and Terzuolo 1987agdmd associated with retrieving and assembling the units, inde-
Sternad and Schaal 1999) have shown hand kinematics in pesdent of peripheral activation of the muscles used to speak.
figure-eight task to be cyclical between movement segmemt®deling approaches employ algorithms to account for the
and characteristically interrelated within each segment. Otime-warping associated with the production of these units
aim was to determine how these segment-dependent kinenfetiopfield 1995).
ics were related to cortical neuronal activity. The present Alternative hypotheses pertaining either to preplanning or an
results show that the cortical population activity closely coeptimal control scheme have been examined relative to the
responds to these segment-dependent kinematics. Becausdaitme and kinematics of drawing (Viviani and Flash 1995). In
kinematic variables are interrelated, cortical activity is corréhe planning scheme, a blueprint as to the form of the move-
lated simultaneously to multiple movement parameters. Forent ¢z power law and isochrony) would exist centrally,
instance, our data show a strong cubic relation between thikereas in the optimization scheme, the relation between ki-
directional prediction interval and speed in addition to thatematics and figure geometry would be determined by a global
between the prediction interval and radius of curvature.  constraint; in this case, the minimization of jerk. With the
Individual cells have activity patterns that are cosine tungianning scheme, every point is specified along the trajectory.
to EMG activity and joint angular velocities. This relation,The optimization scheme requires only a few specific via
derived from the centesout task, is robust across tasks wherpoints and was able to account for most of the observed
EMG and joint velocity can be used to predict discharge ratieatures of the movement (except for those associated with the
Because EMG, joint angular velocity, and hand velocity are sturation of the overall movement) as well as thgpower law.
highly linked in these tasks, it is difficult to categorize thélow then might these two viewpoints converge? During draw-
neuronal activity as specifically related to an individual moveéng, it is likely that there is some sort of central representation
ment parameter. In fact, it is possible that these widespreafdthe figure to draw: a desired trajectory. Our experiments
correlations represent a system strategy to control movembate shown that indeed there is an accurate representation of
efficiently. On the other hand, population vectors do not yielthe upcoming trajectory in the activity of motor cortical cells.
accurate EMG or joint angular velocity time profiles (Moran dt is likely that the criterion of smoothness or minimum jerk
al. 1999; Moran and Schwartz 1999a). To use cortical activitpuld also be recognized centrally, and the inverse relation
to predict these intrinsic variables, it is possible that a moketween speed and curvature would tend to ensure smoothness
complex extraction algorithm will be required. by minimizing changes in acceleration within a figure.
Because the neural trajectory accurately reflects the hand Baoothness may be a necessary condition for merging seam-
jectory, it allows us to address directly some of the issues raidedsly units of movement processing (Viviani and Flash 1995).
by behavioral studies of drawing. Psychophysical results show
that these movements are processed in pieces or segments (SoeshKakavand trained the animals and assisted in the experiments.
ting and Terzuolo 1987b; Viviani 1986; Viviani and Cenzato This work was supported by Neurosciences Research Foundation, the Bar-

1985), although see Sternad and Schaal (1999). Our results W@%‘@Jggggc’g;ﬁt 'ﬂ;t_'tzuég'?snd National Institute of Neurological Disorders

tend to support this viewpoint. The kinematics (velocity, acceler-address for reprint requests: A. B. Schwartz, The Neurosciences Institute,
ation, curvature, and angular velocity) during drawing were highiyp640 John Jay Hopkins Dr., San Diego, CA 92121.
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