
  

  

Abstract— Invasive BCI studies have classically relied on 
actual or imagined movements to train their neural decoding 
algorithms.  In this study, non-human primates were required 
to perform a 2D BCI task using epidural microECoG 
recordings.  The decoding weights and cortical locations of the 
electrodes used for control were randomly chosen and fixed for 
a series of daily recording sessions for five days.  Over a period 
of one week, the subjects learned to accurately control a 2D 
computer cursor through neural adaptation of microECoG 
signals over “cortical control columns” having diameters on a 
the order of a few mm.  These results suggest that the spatial 
resolution of microECoG recordings can be increased via 
neural plasticity. 

I. INTRODUCTION 
T the current time, there remain several limitations to 
forming an effective neuroprothesis for voluntary motor 

control.  Brain controlled interfaces (BCI) are always faced 
with the trade-off between invasiveness and robustness of 
signal.  At the one extreme, electroencephalography (EEG) 
relies on signals from noninvasive electrodes placed directly 
on the scalp.  While one and two-dimensional control has 
been demonstrated with EEG [1, 2], the poorer accuracy and 
learning rates have limited its efficacy compared to other 
methods of BCI.  In contrast, intracortical electrodes have 
been demonstrated as an effective source for a BCI [3, 4].  
However, these types of recordings require complicated, 
highly invasive surgeries.  Additionally, the quality of these 
recordings tends to decay over time as electrodes become 
encapsulated by the immunologically reactive tissue. 

An intermediate control signal modality, known as 
subdural electrocorticography (ECoG), has also been 
proposed as a possible signal source for a brain-computer 
interface.  Previously, event-related potential (ERP) changes 
of the ECoG signal have been used to identify the onset and 
timing of various motor actions on individual trials [5].  
Additionally, it has been demonstrated that event-related  
power changes recorded using ECoG can be used for 
mapping somatotopic areas of sensorimotor cortex 
associated with visually cued  movements of different body 
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parts [6]. A Fourier transform or Fourier-like algorithm is 
performed over given time windows during both a given task 
as well as at rest.  Using this analysis to estimate the power 
at different frequencies of the signal for the given epochs of 
data, it is possible to identify different frequency 
components that increase or decrease in power during the 
task compared to rest.  Historically, two bands that have 
been specifically identified were the alpha (8-13 Hz) and 
beta (15-25 Hz) bands which tended to show a decrease in 
power with the onset of motor movement or imagery [6].   

Our lab demonstrated that human ECoG could be used for 
real time, closed-loop control using motor imagery tasks as 
the training paradigm [7].   For this control, power levels in 
3 Hz bands ranging from 10-200 Hz were used.  Patients 
learned to control a computer cursor in minutes, unlike 
months or years as is typically required in EEG [2, 8].  By 
simply placing electrodes on the surface of the brain below 
the skull and dura, high frequency signal components, not 
detectable on the scalp via EEG, were available to be used 
for control.  Additionally, analysis of the ECoG signals 
following the experiment revealed that higher frequencies up 
to 180 Hz showed differences between movement and rest as 
well as between different joystick movement directions.  

At the present time, there remain many questions about 
how to best optimize an ECoG brain-computer interface.  
Specifically, it is still uncertain what frequency bands and 
power spectrum estimation algorithms are best suited for 
control.  Choosing optimal control parameters is 
complicated by the cortical changes that occur once brain 
signals are directly used for a closed-loop BCI.  The signal 
changes and decoding that best predict motor movements 
during open-loop recordings may not be the best once the 
subject switches to closed-loop brain control where the 
cortical signals directly control the cursor.   This paper 
examines the neural signals and the adaptation that occurs 
during closed-loop ECoG BCI tasks to gain insight into 
improving future BCI performance.   

II. DATA ANALYSIS 
Our lab has trained monkeys to perform two-dimensional 

closed-loop control of a cursor with EECoG.  In these 
experiments, no open-loop training was done to identify 
event-related signals.  Instead, arbitrary recording sites in 
motor cortex (M1) were assigned to control the cursor using 
the power within the frequency range from 65-100 Hz.  The 
65-100 Hz frequency band was chosen because previous 
amplitude increases in this high gamma band had been 
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observed in M1 during arm movements compared to rest.  
Over the course of five recording days, the subject was able 
to achieve control of a cursor to successfully perform center-
out reaching tasks as well as circle drawing tasks. 

Two recording sites spaced one cm apart from each other 
were used to control the cursor velocity.  One site was 
assigned to control the horizontal velocity where an increase 
in amplitude between 65-100 Hz caused the cursor to move 
to the right while a decrease caused the cursor to move to the 
left.  Likewise, the other recording site amplitude between 
65-100 Hz controlled the vertical cursor velocity. 

 The first task was a center-out reaching task where the 
subject controlled the cursor to acquire a center target and 
then move to one of four targets at the periphery.  The 
second task was a drawing task where the subject controlled 
the cursor to trace around a circle in either the clockwise or 
counterclockwise direction.  For the center-out task, the 
subject was able to complete 40 movements in 
approximately six minutes.  Additionally, the monkey was 
able to complete 30 circle drawings in approximately seven 
minutes. 

Following the completion of this closed-loop EECoG 
experiment, post hoc analysis of the data was done to 
examine and give insight into how closed loop control could 
be improved in the future.  Two different types of analysis 
were conducted.  First, for successful two-dimensional 
control, there must be two independent control signals.  In 
the present experiments, these two degrees of freedom were 
obtained by using two different recording sites located 
approximately one cm apart.  The circle drawing data was 
analyzed to determine how independent these two signals 
were.  Additionally, for a successful brain computer 
interface, the signal should be optimized for optimal time 
response properties while maximizing the amount of signal 
to noise.  To examine different potential control properties, 
the center-out data was analyzed using different control 
parameters than those used for the actual experiment. 

A. Circle Drawing Task 
The circle drawing task provides an excellent way to 

analyze how well a subject is able to independently control 
two degrees of freedom.  In order to draw a perfect circle 
using standard x and y Cartesian coordinates for control, it is 
necessary for the velocity control signals to be both positive, 
both negative, and opposite each other such that the cursor 
can be directed to move in all directions.  Fig. 1 shows the 
average path of the cursor for 90 circles drawn on the third 
day of recording.  While performing the task, the left and 
upward directions were coded for by increases in power at 
their respective recording sites.  Therefore, since the cursor 
path tends to be more of an ellipse along the upper-left to 
lower-right diagonal, it appears that the two recording sites 
were correlated such that both sites tended to be higher or 
lower power rather than one being high and the other being 
low. 

   
Figure 1 - The average cursor trajectory for counter-clockwise and 
clockwise circles with closed-loop control.  The large green circle 
represents the start and end location for the trial. 
In order for the monkey to improve his performance in the 

circle drawing task, it is necessary to decorrelate the two 
signals being used for control.  This decorrelation could be 
done either indiscriminately across all frequencies or only 
within the frequency band being used for control.  To 
examine what was occurring during the experiment, power 
spectrum analysis was performed on the two recorded 
signals in 300 ms time bins and 3 Hz frequency bins.  The 
correlation between the powers at each given frequency for 
the two different channels was then calculated for all points 
in time.  Fig. 2 shows the resulting correlations for the five 
days of recordings.  This clearly shows that the correlation 
between the recording sites dropped between 65-100 Hz.  It 
should also be noted that it also appears that the signals 
became decorrelated at higher frequencies and also were less 
correlated to begin with. 

 
Figure 2. The correlation between the two recording sites used for 
horizontal and vertical control at various frequencies across five days of 
recording. 

B. Center Out Task 
The center out task is based on a given desired goal rather 

than a desired path.  Therefore, it is easier to determine the 
optimal movement direction at any point in time.  It has been 
shown that for unconstrained point-to-point arm reaching 
tasks, subjects tend to follow an approximately straight line 
[9].   Additionally, when the same force field is used to 
significantly alter the dynamics of the task for multiple 
trials, subjects tend to adapt to converge back to similar 
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straight line trajectories [10].  Therefore, our closed-loop 
control data was analyzed using the assumption that a 
straight line between the cursor and the target was the 
optimal trajectory.  This allows us to go back and compare 
various decoding schemes based on the recorded signals to 
examine how well their decoded direction fits the desired 
direction.  To assess the success of the various decoding 
methods, a dot product metric was used.  This was obtained 
by finding and comparing two vectors.  Fig. 3 shows a 
schematic of these two vectors.  The first vector is a desired 
movement vector which is a unit vector that points in the 
direction from the current cursor position to the target 
position.  The second vector is determined by the decoding 
of the recorded signals.  Each decoding scheme produced x 
and y values from the signals of the electrodes assigned to 
their respective directions.   These prediction vectors were 
then normalized so that the mean magnitude was equal to 
one.  The dot product of each desired unit vector and 
normalized prediction vector was then calculated.  Finally, 
the mean of these dot products across all points in time was 
calculated.  Therefore, if all of the decoding vectors pointed 
perfectly in the direction of the desired vectors, the mean dot 
product would be equal to one.  

 
Figure 3 - Schematic showing the relationship between the cursor and 
target for determining the desired direction as well as a hypothetical 
decoded direction from x and y control signals. 
 
This analysis was used to look at what frequency range 

may be best for control.  Band pass filtering of the data was 
done with various pass bands.  Then using a total lag of 700 
ms, the power of the signal between 65-100 Hz was 
calculated.  Once again the power values were decoded to 
give a predicted vector that was then compared with the 
desired vector.  The average dot product metric was once 
again used to determine how well the predicted matched the 
desired.  Fig. 4 shows the results for 19 different frequency 
pass bands.  There are two main trends that emerge.  First, in 
general, larger pass bands up to 35 Hz tend to give better 
results.   Additionally, any band that is close to 60 Hz tends 
to have a poorer result presumably because of 60 Hz 
electrical noise.  Interestingly, the 65-100 Hz band (in blue) 
that was actually used for control was not the best in this 
analysis.  

Overall, it would appear that moving the center frequency 
higher to 90 Hz would yield better results.  Additionally, it 

appears that for control the monkey was using most of the 
range of frequencies within the 65-100 Hz band.  However, 
this analysis is biased by the control parameters that were 
actually used.  It does appear that the larger the pass band 
the monkey is able to successfully modulate, the more 
successful control the monkey will achieve.  At some upper 
limit, when the pass band is too wide such that the monkey 
is only able to control a subset of the frequencies within a 
band; the inclusion of a wider band in the decoding 
algorithm only adds noise to the system.  The key will be to 
find the proper balance between making sure the band is not 
too narrow such that it slows the response but also not too 
wide such that unnecessary noise is added relative to the 
underlying signal.  Based on the current data and the desire 
to center the control at 90 Hz to avoid 60 Hz and its first 
harmonic of 120 Hz, our best prediction is that 75-105 Hz 
(in yellow) will likely be a good choice for future control. 

 
Figure 4 - The dot products using a lag of 700 ms for various pass bands.  
The blue represents the 65-100 Hz band used for actual control in the 
experiment.  The yellow represents the proposed 75-105 Hz band for 
future control. 

III. DISCUSSION 
 The presented studies show the important role that 

biofeedback and neural plasticity play in brain-computer 
interfaces.  The ability to arbitrarily assign chosen signal 
features from a certain electrode to BCI cursor control 
allows for a reduction in the amount of open-loop screening 
necessary for BCI control.  Additionally, electrodes that may 
have otherwise showed no discernable change to the subset 
of screening tasks used may still be potential control sites. 

 Also, feedback and neural plasticity allowed for more 
independent control using two sites in separate dimensions 
that were originally too close to each other to be completely 
uncorrelated.  This opportunity to train the existing cortical 
architecture to realign and resize “cortical columns” to fit the 
dimensions of our recording electrodes offers potential for 
improved spatial resolution with ECoG recordings for BCI 
applications.  This improved spatial resolution should 
potentially allow for ECoG based BCIs that both increase 
the number of degrees of freedom that can be controlled and 
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also minimize the surgical footprint of implanted electrodes. 
 Overall, by being able to demonstrate successful closed 

loop control with epidural ECoG, steps toward a potential 
brain-computer interface with epidural ECoG have been 
taken.  Additionally, this report shows that broadband 
amplitude modulation with a continuous filtering method 
provide the opportunity to achieve fast control.  Also, the 
biofeedback provided with closed-loop BCI tasks creates the 
opportunity for neural plasticity to improve performance.  
Further testing of these predictions and chronic tests are 
needed to further explore the potential of epidural ECoG as a 
brain-computer interface modality.  
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