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Contrast enhancement of gas sensor array patterns with
a neurodynamics model of the olfactory bulb

B. Raman, T. Yamanaka, R. Gutierrez-Osuna∗
Department of Computer Science, Texas A&M University, College Station, TX, USA

Received 20 September 2005; accepted 5 January 2006

Abstract

We propose a biologically inspired signal processing model capable of enhancing the discrimination of multivariate patterns from gas sensor
arrays. The model captures two functions in the early olfactory pathway: chemotopic convergence of sensory neurons onto the olfactory bulb,
and center on–off surround lateral interactions. Sensor features are first topologically projected onto a two-dimensional lattice according to their
selectivity profile, leading to odor-specific spatial patterning. The resulting patterns serve as inputs to a network of mitral cells with center on–off
surround lateral inhibition, which enhances the initial contrast among odors and decouples odor identity from intensity. The model is validated
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sing experimental data from an array of temperature-modulated metal-oxide sensors. Our results indicate that the model is able to
eparability between odor patterns that is available at the inputs.
2006 Elsevier B.V. All rights reserved.
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. Introduction

Pattern recognition for gas sensor arrays has traditionally
elied on statistical or artificial neural network techniques[1–3].
uch can be learned, however, by studying the solutions that
iological olfactory systems have developed over evolutionary

ime. Leveraging a growing body of knowledge from compu-
ational neuroscience[4], biologically inspired approaches to
achine olfaction have become a recent subject of attention

5,6]. To the best of our knowledge, the earliest work on neu-
omorphic computation for gas sensor arrays was reported by
atton et al.[7], who employed a model of olfactory bulb–cortex

nteractions developed by Ambros-Ingerson et al.[8] to clas-
ify data from micro-hotplate metal-oxide sensors. Kauer and
o-workers[9,10] employed a spiking-neuron model of the
eripheral olfactory system to process signals from a fiber-optic
ensor array. Pearce et al.[11] investigated the issue of concen-
ration hyperacuity by means of massive convergence of sensory
nputs. Otto et al.[12] employed the KIII model of Freeman

∗ Corresponding author. Fax: +1 979 847 8578.

and co-workers[13] to process data from chemical sensors.
group has previously developed computational models for
mixture processing through habituation[14–16], gain contro
through shunting inhibition[17], and background suppress
through cortical feedback[18].

This paper presents a detailed characterization of a con
enhancement model that incorporates two key principle
the early olfactory pathway: convergence of sensory in
and lateral inhibitory circuits[19,20]. The model is validate
on experimental data from an array of temperature-modu
metal-oxide semiconductor (MOS) chemoresistors. Our re
are consistent with recent findings from neurobiology, and s
that the model is able to enhance contrast between odor pa
beyond what is available in the raw inputs.

2. Neuromorphic model

Fig. 1 illustrates the basic structure of the proposed mo
Signals from a chemosensor array are clustered onto a
dimensional lattice so as to mimic the chemotopic converg
of olfactory receptor neurons (ORNs) inputs onto the olfac
E-mail addresses: barani@cs.tamu.edu (B. Raman),
amanaka@cs.tamu.edu (T. Yamanaka), rgutier@cs.tamu.edu
R. Gutierrez-Osuna).

bulb (OB). This initial “olfactory image” is then processed with a
neurodynamics model that mimics the lateral inhibitory circuits
in the bulb.
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Fig. 1. Structure of the proposed model. Receptor neurons in the olfactory
epithelium converge onto the olfactory bulb in a chemotopic manner, form-
ing the first organized representation of a stimulus: an olfactory image. Contrast
between the images for different odors is subsequently increased using center
on–off surround lateral interactions in the olfactory bulb.

2.1. Input dimensionality

A fundamental difference between machine and biological
olfaction is the dimensionality of the input space. The biological
olfactory system employs a large population of ORNs (100 mil-
lion neurons in the human olfactory epithelium, replicated from
1000 primary receptor types), whereas its artificial analogue uses
very few sensors. The massively redundant representation used
by the olfactory system improves signal-to-noise ratio, providing
increased sensitivity in the subsequent processing layers[11].

To simulate a large population of cross-selective sensors we
employ sensor modulation. In this approach, a suitable param-
eter that modifies the selectivity of the sensor must first be
identified. In the case of MOS materials, the relative selectivity
to different volatiles is known to be a function of the operating
temperature at the surface of the material[21]. This operating
temperature is typically maintained at a constant set-point (spec
ified by the manufacturer) by applying a dc voltage across a
resistive heater built into the device. This form of excitation is
commonly referred to as isothermal operation. However, due
to the abovementioned temperature-selectivity dependence o
MOS devices, more information can be extracted from the sen
sor by simply modulating the heater voltage during exposure
to a volatile and capturing the dynamic response of the senso
at each heater voltage. The process is illustrated inFig. 2. We
apply a sinusoidal voltage to the sensor’s heater, and recor
t odu
l ts of

the device, the response of the sensor at each heater voltage can
be considered a separate “pseudo-sensor”, and used to simulate
a large population of ORNs.

2.2. Chemotopic convergence

The projection from the olfactory epithelium onto the olfac-
tory bulb is organized such that ORNs expressing the same
receptor gene converge to one or a few glomeruli (GL)[22], glob-
ular structures of neuropil on which ORNs synapse mitral cells.
This form of convergence serves two computational functions.
First, massive summation of ORN inputs averages out uncor-
related noise, allowing the system to detect odorants below the
detection threshold of individual ORNs[11]. Second, chemo-
topic organization leads to a more compact odorant representa-
tion than that available at the epithelium, providing the means to
decouple odor quality from odor intensity. This is the basis for
the traditional view of GL as labeled lines (one GL: one odor)
or, more recently, as odotope detectors (one GL: one molecular
feature)[23].

In ref. [24] we have presented a theoretical model of chemo-
topic convergence. The model is based on three principles: (i)
ORNs with similar affinities project onto neighboring GL, (ii)
GLs in OB are spatially arranged as a two-dimensional surface,
and (iii) neighboring GL tend to respond to similar odors[25,26].
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herefore, a natural choice to model the ORN-GL converg
s the self-organizing map (SOM) of Kohonen[27].

In what follows, we will refer to pseudo-sensors as ORNs
he SOM nodes to which the pseudo-sensors converge as G
orm a chemotopic mapping, we must first define a select
easure upon which ORNs can be clustered together. I
ork, this is accomplished by treating the ORN response a
set of odorants as an affinity vector:

RNi = [ORNO1
i , ORNO2

i , . . . , ORNOC
i ] (1)

here ORNO1
i is the response of ORNi to odor O, andC is the

umber of odorants.
The convergence model operates as follows. The SOM is

ented with a population of ORNs, each represented by a v
n C-dimensional affinity space, and trained to model this di
ution. Once the SOM is trained, each ORN is then assign

applied to a resistive heaterRH, and the sensor resistanceRS is measured as
electivity dependence, the response of a sensor at a particular tempera
n of ORNs.
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the closest GL in affinity space, thereby forming a convergence
map from which the response of each GL is computed as:

GO
j =

N∑
i=1

WijORNO
i (2)

whereN is the number of ORNs in the array, andWij = 1 if ORNi

converges to GLj and 0 otherwise.
This convergence model works well when the different sen-

sors are reasonably uncorrelated, since then the projection of
ORNs across the SOM lattice approximates a uniform distribu-
tion, i.e., maximum entropy[28]. Unfortunately, the population
of pseudo-sensors created by temperature modulation is rather
collinear. As a result, a few GL tend to receive the majority of
ORNs, which capture the “common-mode” response of the sen-
sor, overshadowing the most discriminatory information in the
temperature-modulated response. To avoid this issue, the activity
of each GL is normalized by the number of ORNs that converge
to it:

Gj =
∑N

i=1WijORNi∑N
i=1Wij

. (3)

Note that this solution is not driven by biological plausibility
but largely by the limitations of our sensors.
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Fig. 3. Lateral inhibition at the output of the olfactory bulb.

wherevj is the activity of mitral neuronj, τj the time constant
that captures the dynamics of the neuron,Lkj the synaptic weight
between neuronsk andj, M the number of neurons, andIj is the
external input in Eq.(3) properly scaled to balance the con-
tribution of receptor and lateral inputs (Ij = 10Gj). Our model
assumes a one-to-one mapping between GL and mitral neurons
(refer toFig. 3); although in some animal species GLs are known
to project to several mitral neurons, the computational function
of this divergence mapping is largely unknown. The non-linear
activationϕ(·) is the logistic function defined by:

ϕ(vj) = 1

1 + exp(−a1(vj − a2))
(5)

where the constantsa1 anda2 are set to 0.0336 and 60.0335,
respectively, to match the dynamic range of the signal. For sim-
plicity, all mitral neurons are assumed to have the same time
constantτ = 10 ms.

Integration of Eq.(4) with Euler’s method leads to a differ-
ence equation:

vj(t + �t) ∼= vj(t) + �t
dvj(t)

dt
=

(
1 − �t

τ

)
vj(t)

+
M∑

k=1

Lkjϕ(vk(t))�t + Ij�t (6)
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.3. Center surround lateral inhibition

The initial glomerular image is further transformed in
B by means of two distinct lateral inhibitory circuits. The fi
f these circuits, which occurs between mitral and inhibi
eriglomerular (PG) cells, has been suggested to perform

orm of “volume control” that broadens the dynamic range
oncentrations at which an odorant can be identified[29]. The
econd circuit occurs through the interaction between mitra
nhibitory granule (G) cells at the output of the OB.

Two roles have been suggested for this granule-mediate
uit: (i) sharpening of the molecular tuning range of individ
itral cells[23], and (ii) global redistribution of activity suc

hat the bulb-wide representation of an odorant, rather tha
ndividual tuning ranges, becomes specific and concise ove
30]. More recently, both lateral circuits have been found t
enter on–off surround inhibitory[31], an organization rem
iscent of the classical receptive fields mediated by gan
ells in the retina[32]. This form of lateral inhibition perform
winner-take-all competition, where strongly excited units
ress weakly excited ones. In the retina, center-surround le
dge detection and discrimination of objects by size. In the

ext of olfaction, these circuits have been suggested to pe
attern normalization, noise reduction, and contrast enh
ent of the spatial patterns in the OB[31].
We model this center on–off surround circuit with an addi

odel[33], whose general form is:

dvj(t)

dt
= −vj(t)

τj

+
M∑

k=1

Lkjϕ(vk(t)) + Ij (4)
e
e

to
-

-

here the integration time step�t was set to 1 ms for all th
imulations presented in this paper.

To model center on–off surround, each neuron makes
atory synapses to nearby units, and inhibitory synapses
istant units as follows:

kj =




U(a, b) d(k, j) ≤
√

M

r

U(−a, b)

√
M

r
< d(k, j) <

2
√

M

r

0 d(k, j) ≥
√

M

r

(7)

hereU(a, b) is a uniform distribution betweena andb, d the
istance between units measured as a Euclidean distance

he lattice (d =
√

(rowk − rowj)2 + (colk − colj)2; row and co
eing the row and column coordinates of a neuron in the lat
ndr determines the receptive-field width of the lateral con

ions. Thus, the output of a given mitral neuron is determine
he combined effect of external inputs from ORNs, center on
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Fig. 4. An example center on–off surround receptive field in a 20× 20 lattice
for r = 5.

surround interactions with collateral neurons, as well as by its
own dynamics. An example center on–off surround receptive
field derived with Eq.(7) is shown inFig. 4.

3. Experimental results

To validate the model, we have collected a database o
temperature-modulated sensor patterns for three analytes ac
tone (A), isopropyl alcohol (B), and ammonia (C), at three
different concentrations. Three replicas were sampled for eac
combination of analyte and concentration. Two Figaro MOS
sensors (TGS 2600, TGS 2620)[34] were temperature modu-
lated using a sinusoidal heater voltage (1–7 V; 2.5 min period
10 Hz sampling frequency). The response of the two sensor
(concatenated) to the three analytes at the three concentratio
levels is shown inFig. 5a. Each point in the temperature cycle is
considered as a separate pseudo-sensor, thus resulting in a po
ulation of 3000 pseudo-sensors. This population projects ont
a GL layer with 400 nodes, arranged as a 20× 20 SOM lattice,
based on the convergence model described in Section2.2. The

SOM arranges itself to model the affinity space, as shown in
Fig. 5b. Only one of the samples for the highest concentration
of each odor was used to train the SOM; all the remaining sam-
ples and concentrations were used for validation purposes. The
400 outputs of the convergence model were used as the inputs
to the neurodynamics OB model.

3.1. Spatial patterning

The temperature modulated patterns inFig. 5a were pro-
cessed with the proposed OB model.Fig. 6(top row) shows the
spatial pattern that results from sensory convergence at the input
of the OB. As a result of the chemotopic mapping, each odor gen-
erates a unique spatial pattern across units in the SOM. However,
these spatial patterns are highly overlapping due to the collinear-
ity of the sensors.Fig. 6(middle row) shows the resulting spatial
activities following stabilization of the center-surround lateral
interactions in Eq.(4). Odor A leads to heavy activation on two
highly localized regions (spatial code: 13). Odor B produces
similar activation in regions 1 and 3, but also high activation in
region 4 (spatial code: 134). This unique region 4 corresponds to
pseudo-sensors in the smaller peak that occurs for odor B alone
(refer toFig. 5a). Odor C produces heavy activation of regions
1, 2, and 5 (spatial code: 125). It is important to note that the
location of these activation regions is concentration-invariant,
b n, in
c
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e
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d n-
c hich
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ig. 5. (a) Temperature modulated response of two MOS sensors (conc
oncentrations. Three replicates per analyte and concentration are show
OM nodes and pseudo-sensor repertoire in affinity space (3000 ORNs,× 2
f
e-

h

;
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n
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o

ut their amplitude and spread increases with concentratio
onsistency with recent finding in neurobiology[35].

Fig. 6 only provides information about the steady-s
esponse of the model. To analyze the temporal trajecto
ach dynamic attractor, the 400-dimensional (20× 20) space
as projected onto the first three principal components o
ata, as shown inFig. 7. Trajectories for each odor and co
entration originate at nearby locations in state space, w
orrespond to the highly overlapping spatial patterns at the
f OB, shown inFig. 6 (top row). As a result of center on–o
urround lateral connections, the activity for each odor sl
oves away from the initial location and settle into odor-spe

xed-point attractors, which correspond to the localized sp
atterns inFig. 6(middle row).

ated) to acetone (odor A), isopropyl alcohol (odor B), and ammonia (odhree
the figure to illustrate the repeatability of the patterns. (b) Distribution of glomerula
ce).
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Fig. 6. Spatial maps at the input (top row) and output (middle row) of the olfactory-bulb network (r = 5). The bottom row shows the five sparse coding regions that
emerge as a result of the lateral interactions.

Visual inspection of the steady-state response inFig. 6 and
the transient trajectories inFig. 7 clearly show that the lateral
inhibitory network is able to significantly increase the contrast
between different odors. The separability of these patterns is
analyzed systematically in the following section.

4. Analysis of results

4.1. Separability measure for odor patterns

To characterize the pattern-recognition performance of our
model, we employ a measure of separability between categories
related to the Fisher’s discriminant analysis[36]:

J = trace(SB)

trace(SW)
(8)

whereSW andSB are the within-class and between-class scatter
matrices, respectively, defined as follows:

SW =
Q∑

q=1

∑
x ∈ ωq

(x − µq)(x − µq)T (9)

F ts of
t in th
d of the
O .

SB =
Q∑

q=1

(µq − µ)(µq − µ)T (10)

µq = 1

nq

∑
x ∈ ωq

x and µ = 1

n

∑
∀x

x (11)

wherex is a feature vector (in this paper, output or input pattern to
the OB model),Q the number of odor classes,µq andnq the mean
vector and number of examples for odorq, respectively,n the
total number of examples in the dataset, andµ is the mean vector
of the entire distribution. Being the ratio of the spread between
classes relative to the spread within each class, the measureJ
increases monotonically as classes become increasingly more
separable.

Using this objective function, we introduce a novel mea-
sure that provides a tradeoff between concentration-invariant
separability across odors and concentration separability within
each odor. This measure favors representations where the odors
are clustered hierarchically based first on their identity (main
cluster) followed by their concentration levels (sub-cluster), as
shown inFig. 8.

F n
f r iden-
t each
c A).
ig. 7. Evolution of OB activity along the first three principal componen
he data. Nine trajectories are shown, one per odor and concentrations
ata. The initial points in the trajectories are the spatial maps at the input
B network. Odor separability is improved as a result of lateral inhibition
e
ig. 8. Illustration of the separability measureJbalance. An ideal representatio

avored by the measure shows primary clusters corresponding to the odo
ities (A–C), and sub-cluster within each odor cluster corresponding to
oncentration level (A3 indicating the last and lowest concentration for odor
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Fig. 9. Discriminatory information of GL patterns as a function of receptive field width: (a) separability between odorsJodor, (b) separability between concentrations
within an odorJconc, and (c) separability across odors and across concentrations.

The concentration-invariant separability is measured by:

Jodor = w1JAB + w2JBC + w3JCA (12)

whereJAB, JBC, andJCA are the separability between odors A
and B, B and C, and C and A, respectively, andw1, w2, andw3
are the normalization weights to prevent any pair of odors from
dominating the metric.

The concentration separability within each odor class is
defined by:

Jconc = w4Ja1a2a3+ w5Jb1b2b3+ w6Jc1c2c3 (13)

whereJa1a2a3, Jb1b2b3, andJc1c2c3 are the separability among
the three concentrations within an odor, andw4, w5, andw6 are
normalization weights to balance the relative contribution of
these three terms.

Contributions from these two measures are then added to
yield a metric that balances odor-discrimination and concentra-
tion sensitivity:

Jbalance= Jodor + Jconc (14)

A suitable balance between these two terms can be found
through the normalization weightsw1–w6. In this paper, the
normalization weights are set as the inverse of the maximum
possible value of the corresponding term across all values ofr,
t

s

between 0 and 1 making their contribution toJodor and Jconc
comparable.

4.2. Effect of receptive field width for the center surround
connections

The width of the center on–off surround connections is an
important parameter for the purpose of pattern formation and
generalization. An appropriate value for receptive field width
must provide both stability and good separability. Though the
exact optimal value may depend on the database used, the
general characteristics described below hold across various
databases.

Fig. 9a–c shows the measures of concentration-invariant
recognition (Jodor), concentration separability (Jconc), and their
combinationJbalance(Jbalance= Jodor+ Jconc) as a function of the
receptive field widths. Small receptive fields (r > 4) are primarily
driven by inputs and hence show high stability (converge to a
fixed-point attractor) and less variance. For large receptive fields
(r ≤ 4), the net value of the lateral connections becomes excita-
tory, and the system fails to converge into fixed-point attractors.
Hence we will not consider them for determining the optimal
parameter value for this odor database.

Fig. 9a and b shows the separability between various odors
(Jodor) and across different concentrations within each odor
( e
r dors
he width of lateral connections (e.g.,w1 = 1/max
∀r

(JAB)). This

cales each termJAB, JBC, JCA, Ja1a2a3, Jb1b2b3, and Jc1c2c3
Jconc) as a function of the receptive field width (r). From thes
esults, it is clear that that the separability between pairs of o
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Fig. 10. Characteristics of the spatial odor code for various receptive-field widths
of center on–off surround lateral connections. Global connections result in more
sparse patterns that provide better odor separability.

increases as the width of the receptive field increases, whereas
maximum concentration separability is achieved with small
receptive fields. The maximum of the objective functionJbalance,
which combines concentration-invariant separability and con-
centration separability, occurs atr = 5, as shown inFig. 9c. This
receptive field width will be used to quantify the benefits of the
proposed model.

The steady-state spatial patterns for various receptive field
widths (r > 4) are shown inFig. 10. Global connections lead
to sparse representation (fewer active mitral cells) since highly

active GL regions are able to suppress activity in other regions
in the lattice with weak activity. This causes reduction in the
overlap across patterns and improves odor separability.

4.3. Temporal evolution of pattern separability

To illustrate the benefits of the proposed model, we compare
the resulting pattern-separability against that which is available
(1) from raw sensor data, (2) following chemotopic convergence,
(3) at the output of the OB network without lateral connec-
tions, and (4) at the output of the OB network with random
lateral connections.Fig. 11a–c shows the temporal evolution
of the separability measuresJodor, Jconc, andJbalancefor each
of these cases.Fig. 11a indicates that chemotopic convergence
provides better concentration-invariant separability than raw
temperature-modulated signals. On the other hand,Fig. 11b
shows that random connections can in some cases provide better
concentration discrimination than center-surround connections,
but have significantly lower concentration-invariant separabil-
ity as shown inFig. 11a. Overall, center on–off surround lateral
connections (three repetitions are shown using different ini-
tial weights) provides maximum contrast between odor patterns
amongst the compared schemes, and yields maximum value for
the joint objective functionJbalanceas shown inFig. 11c.

5

ssing
c e early

F ter-surround lateral connections (three repetitions are shown) against (1) raw temperature-
m
(

ig. 11. Comparison of the additive model of OB lateral inhibition with cen

odulated data, (2) following chemotopic convergence, (3) at the output of OB w

three repetitions). (a) Concentration-invariant recognition measureJodor, (b) concen
. Summary and conclusions

We have presented a neuromorphic model for proce
hemosensor array signals based on two mechanisms in th
ith no lateral connections, and (4) at the output of OB with random lateral connections
tration discrimination measureJconc, and (c) balanced measureJbalance.
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olfactory pathway: chemotopic convergence of ORNs onto GL,
and center-surround lateral inhibitory in the olfactory bulb. First,
a large population of pseudo-sensors is obtained by modulating
the operating temperature of a metal-oxide sensor array. The
distribution of pseudo-sensors in chemical affinity space is then
captured with a Kohonen SOM. As a result, sensors become clus-
tered according to their selectivity, and a spatial pattern emerges
across the lattice.

Following recent results from neurobiology, we model OB
lateral inhibitory circuits using a recurrent network with center
on–off surround receptive fields. This network is able to signifi-
cantly reduce the overlap between the odor spatial patterns, and
produce a sparser representation on a few selected mitral cells.

To quantify the benefits of the model, we have proposed a
novel statistical separability measure that provides the neces-
sary tradeoff between concentration-invariant recognition and
concentration sensitivity. We have used this pattern separability
measure to characterize the parameters and evaluate the per-
formance of OB network with center on–off surround lateral
connections. Our results clearly show that the proposed model
consistently enhances contrast and provides better separability
between odor patterns.
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