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Abstract

We propose a biologically inspired signal processing model capable of enhancing the discrimination of multivariate patterns from gas sen
arrays. The model captures two functions in the early olfactory pathway: chemotopic convergence of sensory neurons onto the olfactory b
and center on—off surround lateral interactions. Sensor features are first topologically projected onto a two-dimensional lattice accairding to tt
selectivity profile, leading to odor-specific spatial patterning. The resulting patterns serve as inputs to a network of mitral cells with céinter on—
surround lateral inhibition, which enhances the initial contrast among odors and decouples odor identity from intensity. The model is validat
using experimental data from an array of temperature-modulated metal-oxide sensors. Our results indicate that the model is able to improve
separability between odor patterns that is available at the inputs.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction and co-worker§l3] to process data from chemical sensors. Our
group has previously developed computational models for odor
Pattern recognition for gas sensor arrays has traditionallynixture processing through habituatifhd—16]} gain control
relied on statistical or artificial neural network techniqes3].  through shunting inhibitiorf17], and background suppression
Much can be learned, however, by studying the solutions thahrough cortical feedbadid 8].
biological olfactory systems have developed over evolutionary This paper presents a detailed characterization of a contrast-
time. Leveraging a growing body of knowledge from compu-enhancement model that incorporates two key principles in
tational neurosciencp!], biologically inspired approaches to the early olfactory pathway: convergence of sensory inputs
machine olfaction have become a recent subject of attentioand lateral inhibitory circuit$19,20]. The model is validated
[5,6]. To the best of our knowledge, the earliest work on neu-on experimental data from an array of temperature-modulated
romorphic computation for gas sensor arrays was reported hyetal-oxide semiconductor (MOS) chemoresistors. Our results
Ratton et al[7], who employed a model of olfactory bulb—cortex are consistent with recent findings from neurobiology, and show
interactions developed by Ambros-Ingerson et[8].to clas- thatthe model is able to enhance contrast between odor patterns
sify data from micro-hotplate metal-oxide sensors. Kauer antbeyond what is available in the raw inputs.
co-workers[9,10] employed a spiking-neuron model of the
peripheral olfactory system to process signals from a fiber-opti¢. Neuromorphic model
sensor array. Pearce et[dll] investigated the issue of concen-
tration hyperacuity by means of massive convergence of sensory Fig. 1 illustrates the basic structure of the proposed model.
inputs. Otto et al[12] employed the KIIl model of Freeman Signals from a chemosensor array are clustered onto a two-
dimensional lattice so as to mimic the chemotopic convergence
N of olfactory receptor neurons (ORNS) inputs onto the olfactory
" Corresponding author. Fax: +1 979 847 8578. bulb (OB). This initial “olfactory image” is then processed with a
E-mail addresses: barani@cs.tamu.edu (B. Raman), . 7 T ) .
yamanaka@cs.tamu.edu (T. Yamanaka), rgutier@cs.tamu.edu neurodynamics model that mimics the lateral inhibitory circuits
(R. Gutierrez-Osuna). in the bulb.
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the device, the response of the sensor at each heater voltage can
be considered a separate “pseudo-sensor”, and used to simulate
a large population of ORNs.

Olfactory
epithelium
(transduction)

Olfactory bulb
(signal processing)

2.2. Chemotopic convergence

. The projection from the olfactory epithelium onto the olfac-

(s‘wﬂgshmgn*“m){ = tory bulb is organized such that ORNs expressing the same
Fig. 1. Structure of the proposed model. Receptor neurons in the olfactory€CEPLOr gene converge tf) one OrlafeWQIC)merU“ (2e), QIOb'
epithelium converge onto the olfactory bulb in a chemotopic manner, form-ular structures of neuropil on which ORNs synapse mitral cells.
ing the first organized representation of a stimulus: an olfactory image. Contrasthis form of convergence serves two computational functions.
between the images for different odors is subsequently increased using centp;rst, massive summation of ORN inputs averages out uncor-
on-off surround lateral interactions in the olfactory bulb. related noise, allowing the system to detect odorants below the
detection threshold of individual ORN&1]. Second, chemo-
topic organization leads to a more compact odorant representa-

A fundamental difference between machine and biologicaFon than that available at the epithelium, providing the means to

olfaction is the dimensionality of the input space. The biolo icaldecouIOIe odor quality from odor intensity. This is the basis for

Y put space. 9IC%y o traditional view of GL as labeled lines (one GL: one odor)
olfactory system employs a large population of ORNs (100 mil- .
: . o . or, more recently, as odotope detectors (one GL: one molecular
lion neurons in the human olfactory epithelium, replicated from

1000 primary receptor types), whereas its artificial analogue usefgature)[ZS].
P y PIOTYPes). g In ref. [24] we have presented a theoretical model of chemo-

very few sensors. The massively redundant repregentatiop .us?odpic convergence. The model is based on three principles: (i)
pythe olfactory§y§tem Improves signal-to-noise rat|o, proV'dmgORNs with similar affinities project onto neighboring GL, (ii)
increased sensitivity in the subsequent processing I3yfs GLs in OB are spatially arranged as a two-dimensional surface,

To simulate a large population of cross-selective sensors WE g (iii) neighboring GL tend to respond to similar odi@5, 26}

employ sensor modulation. In this approach, a suitable ParaMs o refore, a natural choice to model the ORN-GL convergence

eter that modifies the selectivity of the sensor must first belzS the self-organizing map (SOM) of Kohonfs].

identified. In the case of MOS materials, the relative selectivity * | o cono o iefarto pseudo-sensors as ORNs, and
:ce)rgIﬁsrraet:tr;/oz;?ttﬁsslﬁrl;gg:vgft?hte)en?aftlér[gjl]or'll'ﬁifsﬂ:)e grpaetirr?tmgthe SOM nodes to which the pseudo-sensors converge as GL. To
P ' P 9 forma chemotopic mapping, we must first define a selectivity

temperature is typically maintained at a constant set-point (Spe?ﬁeasure upon which ORNS can be clustered together. In this

ified by the manufacturer) by applying a dc voltage across a - : .
resistive heater built into the device. This form of excitation iswork, this is accomplished by treating the ORN response across

: : a set of odorants as an affinity vector:
commonly referred to as isothermal operation. However, due

to the abovementioned temperature-selectivity dependence gfrN. — [ORN®:, ORN®2, ..., ORNO] (1)

MOS devices, more information can be extracted from the sen-

sor by simply modulating the heater voltage during exposurevhere ORI\S’1 is the response of ORNo odor O, and” is the

to a volatile and capturing the dynamic response of the sensamuumber of odorants.

at each heater voltage. The process is illustrateeign 2 We The convergence model operates as follows. The SOM is pre-
apply a sinusoidal voltage to the sensor’'s heater, and recoknted with a population of ORNSs, each represented by a vector
the dynamic sensor response. If the heater voltage is modin C-dimensional affinity space, and trained to model this distri-
lated slowly enough relative to the thermal time constants obution. Once the SOM is trained, each ORN is then assigned to

2.1. Input dimensionality
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Fig. 2. Temperature modulation for metal-oxide sensors. A sinusoidal val{ageapplied to a resistive heatRy, and the sensor resistangg is measured as a
voltage drop across a load resisyr on a half-bridge. Due to the temperature-selectivity dependence, the response of a sensor at a particular temperature can be
treated as a separate “pseudo-sensor,” and used to simulate a large population of ORNSs.
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the closest GL in affinity space, thereby forming a convergence i
map from which the response of each GL is computed as:

N
G9 =) w,ORN’ 2)

i=1

whereN is the number of ORNs in the array, aig = 1 if ORN;
converges to Gland 0 otherwise.

This convergence model works well when the different sen-
sors are reasonably uncorrelated, since then the projection of Fig. 3. Lateral inhibition at the output of the olfactory bulb.
ORNSs across the SOM lattice approximates a uniform distribu-
tion, i.e., maximum entropf28]. Unfortunately, the population
of pseudo-sensors created by temperature modulation is ratl

collinear. As a result, a few GL tend to receive the majority Ofbetween neuronsand, M the number of neurons, args the
ORNSs, which capture the “common-mode” response of the Sefs, o input in Eq(3) properly scaled to balance the con-
sor, overshadowing the most discriminatory information in thetribution of receptor and lateral inputs € 10G;). Our model
temperature-modulated response. To avoid thisissue, the activifi_ ¢ | 1as 2 one-to-one mapping between GL]and mitral neurons

of each GL is normalized by the number of ORNs that ConVerg?refertOFig. 3); although in some animal species GLs are known

wherev; is the activity of mitral neurorj, 7; the time constant
hﬂﬁrat captures the dynamics of the neufnthe synaptic weight

toit: to project to several mitral neurons, the computational function
Z?\QWUORNI' of this divergence mapping is largely unknown. The non-linear
Gj= E:Niw (3)  activationg(-) is the logistic function defined by:
i=1"ij
1

(5)

Note that this so_lufcior? is not driven by biological plausibility p(v)) = 1+ expCai(v; — az))
but largely by the limitations of our sensors.
where the constants; anday are set to 0.0336 and 60.0335,
respectively, to match the dynamic range of the signal. For sim-
plicity, all mitral neurons are assumed to have the same time
constantt =10 ms.

Integration of Eq(4) with Euler’s method leads to a differ-

ence equation:

2.3. Center surround lateral inhibition

The initial glomerular image is further transformed in the
OB by means of two distinct lateral inhibitory circuits. The first
of these circuits, which occurs between mitral and inhibitory
periglomerular (PG) cells, has been suggested to perform some N dv;(7) At
form of “volume control” that broadens the dynamic range of it + A1) = v;(1) + At a ( - ) v;()
concentrations at which an odorant can be identif283. The
second circuit occurs through the interaction between mitral and
inhibitory granule (G) cells at the output of the OB. + > _Ligp(ue() At + 1At 6)

Two roles have been suggested for this granule-mediated cir- k=1
cuit: (i) sharpening of the molecular tuning range of individualwhere the integration time stefpr was set to 1 ms for all the
mitral cells[23], and (ii) global redistribution of activity such simulations presented in this paper.
that the bulb-wide representation of an odorant, rather than the To model center on—off surround, each neuron makes exci-
individual tuning ranges, becomes specific and concise over tim@tory synapses to nearby units, and inhibitory synapses with
[30]. More recently, both lateral circuits have been found to bedistant units as follows:
center on—off surround inhibitorf81], an organization remi-

M

niscent of the classical receptive fields mediated by ganglion Ua,b)  d(k, j) < M

cells in the reting32]. This form of lateral inhibition performs r

a winner-take-all competition, where strongly excited units SUPLy = § U(—a, b) M <d(k, j) < VM (7)
press weakly excited ones. In the retina, center-surround leads to r

edge detection and discrimination of objects by size. In the con- VM

text of olfaction, these circuits have been suggested to perform 0 dik. j) = r

pattern normallgatlon, nmsg reduction, and contrast enhanc{\?\ihereU(a,b) is a uniform distribution between andb, d the
ment of the spatial patterns in the Q®&L].

. o ... _distance between units measured as a Euclidean distance within
We model this center on—off surround circuit with an additive

model[33], whose general form is: the lattice = \/(rowk — rowj)2 + (col, — colj)z; row and col
being the row and column coordinates of a neuron in the lattice),
M andr determines the receptive-field width of the lateral connec-
+ ) Lijo(ui(0) + 1 (4)  tions. Thus, the output of a given mitral neuron is determined by
k=1 the combined effect of external inputs from ORNSs, center on—off

dvj(t) . _L@
dr T
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on center SOM arranges itself to model the affinity space, as shown in
Fig. 5. Only one of the samples for the highest concentration
of each odor was used to train the SOM; all the remaining sam-
ples and concentrations were used for validation purposes. The
400 outputs of the convergence model were used as the inputs
to the neurodynamics OB model.

no connections

3.1. Spatial patterning

The temperature modulated patternsHig. 5a were pro-
cessed with the proposed OB modsgh. 6 (top row) shows the
spatial pattern that results from sensory convergence at the input
ofthe OB. As aresult of the chemotopic mapping, each odor gen-
erates a unique spatial pattern across units in the SOM. However,
these spatial patterns are highly overlapping due to the collinear-
ity of the sensordrig. 6(middle row) shows the resulting spatial
Fig. 4. An example center on—off surround receptive field in 220 lattice  gctivities following stabilization of the center-surround lateral
for r=5. interactions in Eq(4). Odor A leads to heavy activation on two

) ] ) _highly localized regions (spatial code: 13). Odor B produces
surround interactions with collateral neurons, as well as by itgjmjlar activation in regions 1 and 3, but also high activation in
own dynamics. An example center on—off surround receptiVeegion 4 (spatial code: 134). This unique region 4 corresponds to

off-surround

field derived with Eq(7) is shown inFig. 4. pseudo-sensors in the smaller peak that occurs for odor B alone
(refer toFig. 5a). Odor C produces heavy activation of regions
3. Experimental results 1, 2, and 5 (spatial code: 125). It is important to note that the

location of these activation regions is concentration-invariant,

To validate the model, we have collected a database dfut their amplitude and spread increases with concentration, in
temperature-modulated sensor patterns for three analytes a@mnsistency with recent finding in neurobiolo®b].
tone (A), isopropyl alcohol (B), and ammonia (C), at three Fig. 6 only provides information about the steady-state
different concentrations. Three replicas were sampled for eaalesponse of the model. To analyze the temporal trajectory of
combination of analyte and concentration. Two Figaro MOSeach dynamic attractor, the 400-dimensional X220) space
sensors (TGS 2600, TGS 262@3)] were temperature modu- was projected onto the first three principal components of the
lated using a sinusoidal heater voltage (1-7V; 2.5 min periodgata, as shown ifrig. 7. Trajectories for each odor and con-
10 Hz sampling frequency). The response of the two sensorentration originate at nearby locations in state space, which
(concatenated) to the three analytes at the three concentrationrrespond to the highly overlapping spatial patterns at the input
levels is shown ifFig. 5a. Each point in the temperature cycle is of OB, shown inFig. 6 (top row). As a result of center on—off
considered as a separate pseudo-sensor, thus resulting in a peprround lateral connections, the activity for each odor slowly
ulation of 3000 pseudo-sensors. This population projects ontmoves away from the initial location and settle into odor-specific
a GL layer with 400 nodes, arranged as a220 SOM lattice, fixed-point attractors, which correspond to the localized spatial
based on the convergence model described in Se2tbiThe  patterns irFig. 6 (middle row).

Sensor 1 Sensor 2 ———> ORN
. . . s | & Glomerulus
| + SOM lattice

Ammonia Isopropy! =3
Alcohol

© 9 9 99
o I R ERL e

S 9
(IR

0.2

Sensor conductance (normalized)

500 1000 1500 2000 2500 3000
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—
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Fig. 5. (a) Temperature modulated response of two MOS sensors (concatenated) to acetone (odor A), isopropyl alcohol (odor B), and ammoniahiagor C) at t
concentrations. Three replicates per analyte and concentration are shown in the figure to illustrate the repeatability of the patterns.titn) Disitduerular
SOM nodes and pseudo-sensor repertoire in affinity space (3000 ORM@ttice).
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Fig. 6. Spatial maps at the input (top row) and output (middle row) of the olfactory-bulb netwof) (The bottom row shows the five sparse coding regions that
emerge as a result of the lateral interactions.

Visual inspection of the steady-state responsEign 6 and 0
the transient trajectories iRig. 7 clearly show that the lateral Sg = Z(“q — ) — w)’ (20)
inhibitory network is able to significantly increase the contrast g=1

between different odors. The separability of these patterns is
analyzed systematically in the following section.

Hq

i z x and u= %Zx (11)
Vx

. nqxewq
4. Analysis of results
wherex is a feature vector (in this paper, output or input pattern to
4.1. Separability measure for odor patterns the OB model)Q the number of odor classgs, andn, the mean
vector and number of examples for odprrespectivelyn the
To characterize the pattern-recognition performance of oufota| number of examples in the dataset, arisithe mean vector
model, we employ a measure of separability between categorigg the entire distribution. Being the ratio of the spread between
related to the Fisher's discriminant analyii8]: classes relative to the spread within each class, the measure
traceg) increases monotonically as classes become increasingly more
= (8)  separable.
Using this objective function, we introduce a novel mea-
whereSy andSg are the within-class and between-class scattegyre that provides a tradeoff between concentration-invariant

"~ trace@w)

matrices, respectively, defined as follows: separability across odors and concentration separability within
0 each odor. This measure favors representations where the odors
Sw = Z Z (r — pg)(x — Mq)T (9)  are clustered hierarchically based first on their identity (main
g=1x €, cluster) followed by their concentration levels (sub-cluster), as
shown inFig. 8.
0.02

0.015..  Trajectories originating 2

0.01- close to each other

0.005. 3
(ap]
g o

-0.005-,  Ammonia
-0.01.

g Acetone ¥
-0.02.,
0 ™
-0.02 e
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PC2 -0.04™~ I e TR
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Fig. 7. Evolution of OB activity along the first three principal components of Fig. 8. lllustration of the separability measuligjance An ideal representation

the data. Nine trajectories are shown, one per odor and concentrations in tlfi@vored by the measure shows primary clusters corresponding to the odor iden-
data. The initial points in the trajectories are the spatial maps at the input of théties (A—C), and sub-cluster within each odor cluster corresponding to each
OB network. Odor separability is improved as a result of lateral inhibition. concentration level (Aindicating the last and lowest concentration for odor A).
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Fig. 9. Discriminatory information of GL patterns as a function of receptive field width: (a) separability betweetdudo(b) separability between concentrations
within an odor/¢on and (c) separability across odors and across concentrations.

The concentration-invariant separability is measured by:  between 0 and 1 making their contribution gyor and Jeonc
comparable.
Jodor = w1JaB + w2JBc + w3Jca (12

whereJag, Jc, andJca are the separability between odors A 4 » Effect of receptive field width for the center surround
and B, B and C, and C and A, respectively, and w», andws connections

are the normalization weights to prevent any pair of odors from

dominating the metric. o ~ The width of the center on—off surround connections is an
The cor.wentratmn separability within each odor class i§mportant parameter for the purpose of pattern formation and
defined by: generalization. An appropriate value for receptive field width

must provide both stability and good separability. Though the
exact optimal value may depend on the database used, the

whereJa1azaz Joib2bs andJeicoczare the separability among general characteristics described below hold across various

the three concentrations within an odor, and ws, andwg are datqbases. o _

normalization weights to balance the relative contribution of Fig. 9a—c shows the measures of concentration-invariant

these three terms. recognition {odor), cONcentration separabilitydong), and their
Contributions from these two measures are then added t@PmMbination/balance(/balance= Jodor* Jeond @s & function of the

yield a metric that balances odor-discrimination and concentraeceptive field widths. Small receptive fields-(4) are primarily

tion sensitivity: driven by inputs and hence show high stability (converge to a

fixed-point attractor) and less variance. For large receptive fields
Jbalance= Jodor + Jeonc (14)  (r<4), the net value of the lateral connections becomes excita-
) tory, and the system fails to converge into fixed-point attractors.
A suitable balance between these two terms can be founflence we will not consider them for determining the optimal
through thg normallzanon We|ghbsl—ul)6. In this paper, the parameter value for this odor database.
normalization weights are set as the inverse of the maximum Fig. % and b shows the separability between various odors
possible value of the corresponding term across all values of (; v and across different concentrations within each odor
the width of lateral connections (e.gu; = 1/rg§>(JAB))- This (7.0 as a function of the receptive field width) (From these

scales each terniag, Jec, Jca, Jalaz2a3 Joib2bs andJeicoes  results, itis clear that that the separability between pairs of odors

Jeonc = waJatazazt wsJbib2b3+ weJcicoc3 (13)
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active GL regions are able to suppress activity in other regions
in the lattice with weak activity. This causes reduction in the
overlap across patterns and improves odor separability.

on-off
surround

4.3. Temporal evolution of pattern separability
Odor A
To illustrate the benefits of the proposed model, we compare
the resulting pattern-separability against that which is available
(1) fromraw sensor data, (2) following chemotopic convergence,

(3) at the output of the OB network without lateral connec-
tions, and (4) at the output of the OB network with random
lateral connectiongig. 11a—c shows the temporal evolution

of the separability measur&ggor, Jcone andJpalancefor each

of these case#:ig. 11a indicates that chemotopic convergence
provides better concentration-invariant separability than raw
Fig. 10. Characteristics of the spatial odor code for various receptive-field width{€mperature-modulated signals. On the other haigl, 11o

of center on—off surround lateral connections. Global connections resultin morshows that random connections can in some cases provide better
sparse patterns that provide better odor separability. concentration discrimination than center-surround connections,
but have significantly lower concentration-invariant separabil-

increases as the width of the receptive field increases, whereH¥ as shown irFig. 11a. Overall, center on—off surround lateral
maximum concentration separability is achieved with smallconnections (three repetitions are shown using different ini-
receptive fields. The maximum of the objective functigfance tial weights) provides maximum contrasfc between_odor patterns
which combines concentration-invariant separability and con@mongst the compared schemes, and yields maximum value for
centration separability, occursiat 5, as shown ifFig. 9. This  the joint objective functiodbajanceas shown irFig. 11c.
receptive field width will be used to quantify the benefits of the
proposed model. 5. Summary and conclusions

The steady-state spatial patterns for various receptive field
widths (->4) are shown irFig. 10 Global connections lead We have presented a neuromorphic model for processing
to sparse representation (fewer active mitral cells) since highlghemosensor array signals based on two mechanismsin the early

Odor B

Odor C |

local » global

Center-Surround
(3 curves,

25 Input of OB

Center-Surround
(3 curves)

Input of OB

22 PRV
Random (3 curves) /

Raw data, No lateral connections

S
n
T

Raw data, No lateral connections

1 1 1 1 |

| I 1 0
0 100 200 300 400 500 0 100 200 300 400 500
(a) Time (ms) (b) Time (ms)

Center-Surround
(3 curves)

4 Input of OB

J balance

[}

Random (3 curves)

Tar rarAse s

Raw data, No lateral connections

1 1 1 1
0 100 200 300 400 500
(c) Time (ms)

Fig. 11. Comparison of the additive model of OB lateral inhibition with center-surround lateral connections (three repetitions are showi) agaitesnperature-
modulated data, (2) following chemotopic convergence, (3) at the output of OB with no lateral connections, and (4) at the output of OB with realdomratgions
(three repetitions). (a) Concentration-invariant recognition meakugge (b) concentration discrimination measuggne, and (c) balanced measufigyance
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